Геологическое строение россии. Геологическое строение и рельеф России. Общие черты рельефа Полезные российские ископаемые


Приказанский район расположен на востоке Русской платформы. Докембрийский кристаллический фундамент, вскрытый буровыми скважинами на глубинах около 1800 м, перекрыт мощной толщей осадочных пород палеозойской группы. В ее составе отложения девонской, каменноугольной, пермской систем. На дневную поверхность выходят лишь породы верхней перми, неогена и четвертичной системы, слагающие современный рельеф района.

В составе верхней перми выделяются отложения казанского и татарского ярусов, лежащие на размытой, сильно закарстованной поверхности гипсов и ангидритов нижней перми. Общая мощность отложений верхней перми около 250 м. Они вскрываются в многочисленных обнажениях в долинах Волги и ее притоков, в балках и оврагах, а также пройдены большим числом буровых скважин.

Образования казанского яруса представлены двумя подъярусами – нижним и верхним, резко отличающимися друг от друга литологически и фаунистически. В сложении нижнеказанского подъяруса участвуют песчаники, песчаные известняки, глины и мергели общей мощностью 30 – 35 м. (Научный путеводитель по Казани и окрестности, 1990)

Казанский ярус представлен на западе в основном морскими образованиями и характеризуется разнообразной фауной фораминифер, брахиопод, пелеципод, гастропод, мшанок, кораллов, наутилоидей, конодонтов. В восточном направлении наблюдается обеднение морской фауны и постепенное замещение ее солоноватоводной и континентальной. С востока на запад мощность яруса сокращается от 190-200 м до 15-20 м.

Верхнеказанский подъярус распространен широко. В его составе выделяются четыре толщи (слои): приказанская, печищинская, верхнеуслонская и морквашинская. Строение верхнеказанского подъяруса характеризуется значительной фациальной изменчивостью и четко выраженной ритмичностью. На западе развиты типы разрезов, целиком представлены морскими образованиями с соответствующим комплексом фаунистических остатков. На востоке разрезы подъяруса состоят из образований континентальных фаций с пресноводной раковинной фауной, костями наземных позвоночных, богатыми растительными комплексами. Между двумя крайними типами разрезов существует достаточно широкая (50-100 км) переходная зона, в пределах которой морские слои чередуются с континентальными красноцветными отложениями.

Уржумские отложения широко распространены на территории РТ, слагая многие водораздельные и приводораздельные пространства. В западной ее части они развиты почти повсеместно. Нижняя граница яруса здесь проводится отчетливо по смене в разрезе сероцветных карбонатно-глинистых пород с остатками морской фауны казанского века. В восточной части – уржумские отложения слагают вершины водоразделов, нижняя граница яруса проводится по подошве аллювиальных песчаников и конгломератов, залегающих с размывом на озерных глинисто-алевролитовых породах, содержащих характерный для верхнеказанского подъяруса комплекс пелеципод и остракод. На остальных территориях уржумские отложения вскрыты скважинами под перекрывающими их верхнепермскими, меловыми, юрскими, неогеновыми и четвертичными образованиями.

Отложения верхнего (татарского) отдела (P 3) представлены северодвинским и вятским ярусами. В наиболее полных разрезах их мощность достигает 150-200 м.

Отложения северодвинского яруса сравнительно широко распространены в западной части РТ, где они слагают водоразделы рек Волга и Свияга, Малый Черемшан и Большая Сульча и их притоков. Они также выступают на поверхность в обрывах правого склона долины Волги и в долинах ее правобережных притоков. В восточной части территории республики серодвинские отложения слагают водоразделы рек Шешма и Зай, Зай и Ик, Дымка и Большой Кандыз. Нижняя граница яруса проводится отчетливо по смене бледно-окрашенных карбонатно-глинистых пород с пелециподами и отстракодами уржумского века ярко-окрашенными песчано-алевролитово-глинистыми породами северодвинского века, содержащими позднепермский фаунистический комплекс.

Неогеновые отложения (N) в пределах территории РТ представлены образованиями аллювиального, реже – аллювиально-озерного и озерно-болотного происхождения, которые формировались в позднем неогене (плиоцене).

Образования четвертичного периода (Q) повсеместно распространены на территории РТ, отсутствуя лишь на обрывистых склонах речных долин. Четвертичные образования покрывают пермские, мезозойские, неогеновые отложения и характеризуются значительным разнообразием, сложностью строения, большой пестротой фациального и литологического состава, изменчивостью мощностей. Формирование четвертичных образований определялось строением рельефа, составом подстилающих пород, характером новейших тектонических движений, а также климатическими особенностями.

Современные (голоценовые, Q IV) аллювиальные отложения слагают пойменные террасы и русла большинства рек РТ. Пойменные отложения представлены, главным образом, песками кварцевыми, косослоистыми с прослоями супесей, суглинков, в нижних горизонтах появляются прослои более грубых песков и галечников с галькой местных пород. Общая мощность голоценового (современного) аллювия составляет 25-30 м. Озерно-аллювиальные отложения голоцена представлены песками, суглинками, глинами, супесями серыми илистыми с остатками органических веществ. Мощность данных отложений от 1-2 до 10-12 м. Современные биогенные (болотные) отложения представлены торфом, глинами, суглинками мощностью до 1-2 м. Техногенные отложения, связанные с деятельностью человека, распространены в основном на территории городов и других населенных пунктов, в местах добычи полезных ископаемых, по линиям железных и шоссейных дорог. (Геологические памятники природы РТ, 2007)

Слои коренных пород в целом залегают спокойно, образуя 4 брахиантиклинальных складки амплитудой около 40-60 м, относящиеся к южной оконечности Вятского вала (Верхнеуслонская, Камскоустьинская, Казанская и Киндерская).

Верхние террасы отделены от нижней хорошо выраженным уступом высотой 29-50 м. они имеют сложное геологическое и геоморфологическое строение. Непосредственно возле уступа расположена среднеплейстоценовая терраса, абсолютная высота которой колеблется от 80 до 140 м (30-90 м над уровнем водохранилища)

Слагающий высокую среднеплейстоценовую террасу аллювий имеет двухчленное строение. Нижняя свита (35-40 м) представлена «нормальным» (гумидным) аллювием с отчетливым разделением на русловые и пойменные фации. Верхняя свита - это перигляциальный аллювий, представленный в основном песками. Можно полагать, что аномально высокие участки этой террасы (120-140м) частично образованы навеянными песками. Раннеплейстоценовая терраса является цокольной – ее слагает «нормальный» аллювий, подошва которого лежит на 10 – 30 м выше межени старой Волги.

Самым древним элементом долины всей Волги является глубокий (до минус 100-200 м) эрозионный врез, выполненный аллювиальными и озерными отложениями акчагыльского яруса верхнего плиоцена. Эти отложения так же выходят за пределы вреза и слагают местами позднеплиоценовую аккумулятивную равнину, сильно переработанную эрозией в четвертичном периоде. Местами они подстилают аллювий среднеплейстоценовой террасы или образуют цоколь раннеплейстоценового аллювия. Менее отчетливо под аллювием голоцена, позднего и среднего плейстоцена прослеживается аллювий менее глубокого (до минус 10-20 м) эрозионного вреза, названный Г.И.Горецким веденским. Он имеет раннеплейстоценовый возраст и моложе аллювия раннеплейстоценовой цокольной террасы.

Широкое распространение карбонатных и сульфатных пород нижней перми и казанского яруса обусловило интенсивное развитие карстовых просессов. В Приказанском районе карст развит повсеместно, но интенсивность его развития неодинакова и контролируется рельефом, тектоникой, составом горных пород.

Карстовые явления приурочены прежде всего к речным долинам, ибо водораздельные пространства сложены некарстующимися породами татарского яруса. Карстующаяся толща казанского яруса наиболее высоко поднята в сводах брахиантиклиналей, что создает благоприятные условия для карстования.

В основном карст связан с вертикальной и горизонтальной циркуляцией подземных вод в толще верхнеказанского подъяруса, лежащей выше уровня рек, т.е. с процессами в зоне активного карста. Это безнапорные нисходящего типа гидрокарбонатно-кальциевые воды.

Исторический и административный центр Казани расположен на левобережье Казанки. Это прежде всего Кремль, построенный на мысообразном выступе высокой среднеплейстоценовой террасе. Уступ высоких террас делит город на две части – верхнюю и нижнюю. Подобное разделение более отчетливо просматривается в старой левобережной части города.

Среднепермские (биармийские) отложения (P 2) занимают под четвертичными образованиями более 2/3 территории РТ. Отложения слагают поверхность дочетвертичного рельефа, на юго-западе перекрыты породами мезозоя, а в долинах крупных рек – неогеновыми образованиями. Отсутствуют лишь на отдельных участках палеорек. Средний отдел включает отложения казанского и уржумского ярусов. Их общая мощность достигает 300 м. (Научный путеводитель по Казани и окрестности, 1990)

Кабирова Камила

Чугунова Валерия


Рельеф

Приказанский район расположен на востоке Русской платформы.(Научный путеводитель по Казани и окрестности, 1990) Казань – старейший город в Среднем Поволжье – расположена на левом берегу Волги в низовьях ее небольшого, длиной 112 км притока Казанки. На этом участке Волга, пересекая южную часть Вятского вала, врезана в известняки и доломиты казанского яруса верхней перми. Огибая Верхнеуслонскую брахиантиклиналь, Волга круто меняет восточное направление течения на южное. Ширина ее древней долины уменьшается до 10 км, но резко выраженная асимметрия склона сохраняется. Крутой и высокий правый склон сложен коренными породами, левый образован серией четвертичных аллювиальных террас, на котором лежит город.

После сооружения Куйбышевского гидроузла в 1957г образовалось водохранилище, затопившее у Казани пойму и частично первую надпойменную террас. Низовья Казанки превратились в залив. Волга вплотную подошла к стенам Кремля. Незатопленные водохранилищем небольшие участки первой надпойменной террасы и высокой поймы защищены дамбой. Ширина водохранилища у Казани колеблется от 3 до 7 км.

Основная часть города расположена на двух террасовых уровнях, разделенных хорошо выраженным уступом высотой 20-25 м, делящим город на верхнюю и нижнюю части. Это деление имеет не только геоморфологическое значение, но и социально-экономическое. Верхняя часть города во всех отношениях более благоустроена и экологически чистая. Нижнюю часть населял простой трудовой люд.

Нижняя часть города расположена на второй надпойменной позднеплейстоценовой террасе, которую в более ранних работах называли первой. Ее поверхность лежит на высоте 15-18 м над меженным уровнем старой Волги и 4-7 м над уровнем водохранилища. В тыловой части террасы прослеживались заболоченные понижения, большая часть которых засыпана.

В южной части города близ подножия уступа высоких террас расположена система связанных между собой озер Кабан: Нижний (или Ближний), Средний (или Дальний) и Верхний. Их площади составляют соответственно 0,6;1,2; 0,25 км 2 . Это позднеплейстоценовые старицы Волги, сильно осложненные карстом. Самым глубоким является Средний Кабан – около 25м.

Верхняя часть города расположена на высоких средне- и ранне-плейстоценовых террасах, морфологически почти не различимых. Их абсолютные высоты колеблются в пределах 80-120 м, относительные под меженью Волги – 40-80м, над уровнем водохранилища – 30-70м.

Перед наполнением куйбышевского водохранилища в пойме Волги, примыкающей к городу с запада, были намыты большие участки, поверхность которых слилась с поверхностью второй надпойменной террасы. На этих участках были размещены портовые сооружения, стадион и другие здания. Для защиты их от затопления были построены дамбы обвалования.

Простирание уступа, разделяющего верхние и нижние террасы, во многом определило направление улиц и общую планировку исторической части города. Вдоль уступа на нижней террасе протягиваются также улицы Свердлова, Павлюхина, Оренбургский тракт.

Уступ и поверхность верхних террас прорезаны глубокими балками и молодыми оврагами, более длинными (до 3 км) на склонах к Волге и более короткими (до 1 км) на склонах к Казанке и ее правому притоку Ноксе. Образование подавляющей части оврагов обязано деятельности человека – сведению лесов, распашке земель, добыче гончарных и кирпичных суглинков, прокладке спускающихся по уступу дорог и улиц. В последние годы после строительства и упорядочения ливневой канализации рост оврагов прекратился. Многие короткие овраги в центральной части города засыпаны. (Средняя Вога, 1991)

Овраги также развиваются более интенсивно на правобережье, где их густоты в среднем составляет 0,5 – 1,0 км/км 2 . На левобережье овраги расчленяют уступ высоких террас и склоны долин малых рек, их средняя густота не превосходит 0,1 км/км 2 . Развитие овражной эрозии обусловлено деятельностью человека – вырубкой лесов, распашкой земель – начавшейся еще во времена Булгарского государства, но особенно интенсивно протекавшей в XIX столетии. В лесных массивах овраги иногда появляются лишь на склонах вдоль дорог после ливней исключительной силы. Наиболее густая овражная сеть развивается в суглинках, менее густая – в глинистомергельной толще татарского яруса. Таковы же различия в скорости роста оврагов. Наряду с первичными оврагами широкое распространение имеют вторичные, врезанные в днища плейстоценовых балок. Таких оврагов особенно много на правом склоне долины Волги. Их образованию способствовал интенсивный подмыв Волгой правого склона, благодаря которому многие балки становились «висячими». Стационарные наблюдения в различных районах Среднего Поволжья показывают, что 2/3 прироста оврагов в длину происходит за счет стока талых вод. (Научный путеводитель, 1990)

На правобережье Казанки, притеррасное понижение низкой надпойменной террасы было занято торфяным болотом (Кизическое болото). В настоящее время здесь на насыпанных грунтах ведется интенсивная жилая застройка.

Гильманова Айгуль


Климат

Республика Татарстан

Территория Республики Татарстан характеризуется умеренно-континентальным типом климата средних широт с теплым летом и умеренно холодной зимой.

На формирование климата существенное влияние оказывает преобладание западного переноса воздуха в тропосфере в нижней стратосфере. Воздушные массы, движущиеся с Атлантического океана, смягчают и увлажняют местный климат, несмотря на значительное удаление от океана. Вместе с тем, сюда поступают воздушные массы и из других, в том числе и резко континентальных районов, таких как Сибирь, Казахстан. (Научный путеводитель по Казани и окрестности, 1990).

Казань

Благодаря довольно частым вхождениям воздушных масс с запада, в Казани наблюдается довольно высокая относительная влажность: в холодное полугодие (ноябрь-март) около 80-85%, в теплое (апрель-октябрь) около 60-80%, среднегодовая 76%. Годовая сумма осадков около 500 мм, в теплый период выпадает около 340 мм, в холодный около 160 мм. В годовом ходе максимальное количество осадков приходится на летние месяцы. Наименее орошаемыми по выпадающим атмосферным осадкам являются февраль и март. Господствующие ветры: южный, западный, юго-восточный и юго-западный. В летний период увеличивается повторяемость северных и северо-западных ветров.

Несмотря на большое удаление от океанов и морей, климат Казани характеризуется высокой повторяемостью значительной и сплошной облачности. С сентября по май включительно повторяемость пасмурного состояния неба составляет свыше 50%, а в осеннее-зимние месяцы – свыше 70%. Осенью и зимой чаще наблюдаются облачные системы, простирающиеся на сотни и тысячи. Это высокослоистые, слоисто-дождевые и слоистые облака, закрывающие обычно весь небосвод. Летом, наоборот, большую повторяемость имеют высоко-кучевые, кучевые, кучево-дождевые и слоисто-кучевые облака.

Скопления продуктов конденсации и сублимации водяного пара в приземном слое атмосферы ухудшают видимость. В зависимости от степени помутнения возникают туман или дымка. В холодное время года при обильном выпадении снега в сочетании с сильным ветром на всей Территории Республики, в частности в городе Казань и ее окрестностях наблюдаются метели, которые относятся к опасным явлениям. Так же сюда относятся сильные ливни, град, грозы.

Основные черты климата Казани и ее окрестностей по климатическим показателям таковы: годовая величина суммарной радиации около 3500 мДж/м 2 , максимум ее в июне около 610 мДж/м 2 , минимум в декабре около 30 мДж/м 2 , среднегодовая температура около +3,7◦С, самый теплый месяц – июль со среднемесячной температурой воздуха около +20◦С, самый холодный месяц – январь со среднемесячной температурой около -13◦С.

Абсолютный максимум температуры воздуха в июле достигал 38◦С, в январе -4◦С, напротив, абсолютный минимум опускался в январе до -47◦С, в июле до -3◦С. По абсолютному минимуму температуры воздуха в Казани лишь два месяца бывают без отрицательных температур – июль и август, а по абсолютному минимуму температуры на поверхности почвы всего один – июль. Таким образом, колебания температуры воздуха и поверхности почвы в Казани и ее окрестностях весьма велики.

Годовой ход температурных параметров простой, солнечнообусловленный. Максимум радиационного баланса и турбулентного теплообмена падает на июнь, максимум температуры воздуха на июль (20-25 июля). В среднем около 13 дней в этом месяце имеют среднюю суточную температуру в пределах 20-25◦С, около 12 дней со среднесуточной температурой 15-20◦С. Жарких дней со средней суточной температурой 25-30◦С около четырех.

Зимой, в январе в среднем бывает около 14 дней со среднесуточной температурой в пределах от -5 до -15◦С. Дней со средней суточной температурой от -15 до -20◦С шесть, от -20 до -30◦С – пять-шесть. Крепкие морозы со средней суточной температурой ниже -30◦С бывают не ежегодно.

Климатическая характеристика сезонов.

Календарные сезоны – весна, лето, осень, зима по длительности и датам начала и конца не совпадают с климатическими и фенологическими сезонами.

За начало весны условно приняты дата устойчивого перехода среднесуточной температуры воздуха через 0ºС и дата разрушения устойчивого снежного покрова. Для района Казани это соответственно 31 марта – 3апреля и 9-11 апреля. За конец весны принята дата перехода средней суточной температуры воздуха через 15 ºС, наблюдающаяся 26-30 мая.

Весна характеризуется быстрым нарастанием температуры, обусловленным увеличением притока солнечной радиации и уменьшением облачности. Весной изменяются условия атмосферной циркуляции: западный перенос с Атлантического океана, особенно интенсивный зимой, весной ослабевает, усиливается меридиональная циркуляция, с которой связаны вторжения теплых воздушных масс с юга и вторжения холодных воздушных масс из Арктики. Резкие понижения температуры, сопровождающиеся выпадением осадков, происходят при быстром перемещении арктических масс воздуха к югу в тылу циклонов.

В марте, в последнем зимнем месяце, среднемесячная температура воздуха в Казани равна 4,7-5,8 ºС, в апреле 4,2-5,1 ºС, средняя майская температура составляет 12,6-13,3 ºС.

Ранней весне характерны еще поздние заморозки. Увеличивается количество атмосферных осадков. Осадки выпадают преимущественно в виде дождя, лишь в первой половине апреля наблюдаются и снегопады. В апреле и мае заметно возрастает число часов солнечного сияния за счет увеличения длины дня и уменьшения облачности. Преобладают дни с переменной облачностью. Изменяется ветровой режим в связи с сезонной перестройкой поля давления воздуха.

В конце мая – начале июня в районе Казани устанавливается теплая, нередко жаркая погода. Окончание весны – начало лета, условно принимаемое за дату перехода средней суточной температуры воздуха через 15 ºС, за конец лета – переход средней суточной температуры через 10 ºС в сторону понижения, которая отмечается в Казани 19-22 сентября.

В летний период наблюдаются различные типы погоды: теплая и влажная, жаркая с кратковременными ливневыми осадками климатически жаркая сухая и ветреная погода, прохладная дождливая и прохладная сухая.

Климатические и погодные условия лета в районе Казани формируются преимущественно под влиянием трансформации поступающих сюда относительно холодных воздушных масс. Среднее число часов солнечного сияния за четыре летних месяца за городом составляет 1003. Температурный режим лета в Казани достаточно однороден. На окраине города температуры приблизительно на 1ºС ниже. Летом из-за увеличения абсолютного влагосодержания воздушных масс и повторяемости циклонических процессов увеличивается влагооборот. Поэтому в летние месяцы выпадают обильные атмосферные осадки. В течение всего летнего сезона преобладает полуясное состояние неба. Господствующими направлениями ветров в летний период являются западные, северо-западные и северо-восточные. Заметно меньше повторяемость юго-западных и северо-восточных ветров.

Неблагоприятными явлениями погоды в летнем сезоне для климата Татарстана и района Казани являются ливни, грозы, град, суховеи, засухи. Наступление осени в районе Казани характеризуется сравнительно резким понижением температуры воздуха и почвы, увеличением числа облачных и дождливых дней, усилением ветров, повышением относительной влажности воздуха. Указанные условия погоды обычно совпадают с окончанием безморозного периода и переходом среднесуточной температуры воздуха через 10 ºС в сторону понижения. В Казани данный переход приходится на 19-22 сентября. От августа к сентябрю сумма атмосферных осадков уменьшается приблизительно на 10 мм. Парциальное давление водяного пара уменьшается в среднем на 4-5 гПа. Осенью увеличивается облачность, возрастает число пасмурных дней. Увеличивается повторяемость ветров юго-западного и южного направления, уменьшается повторяемость ветров северной половины горизонта. Осень отличается повышенной повторяемостью туманов, что крайне неблагоприятно при работе различных видов транспорта.

С переходом среднесуточной температуры воздуха через 0ºС в сторону понижения (30.10-2.11) и появлением снежного покрова (27.10-1.11) наступает зима. Но так как некоторое время еще температура воздуха то повышается, то понижается, и вследствие чего снежный покров стаивает в данный период, продолжающийся в течении трех недель, называется предзимьем. Зима устанавливается с того момента, когда температура воздуха переходит через -5ºС с образованием устойчивого снежного покрова. Зима с предзимьем продолжается пять месяцев – с ноября по март. Зимний период отличается более высокими скоростями ветра, которые вызывают поземки, низовые и общие метели. Дней с большим количеством осадков зимой мало. Осадки, выпадающие обычно в твердом виде, образуют снежный покров. В защищенных местах (лес, городские парки, постройки) высота снежного покрова заметно больше. Неблагоприятными явлениями погоды являются метели. Наряду с сильными ветрами, крепкими морозами сюда следует отнести гололед, изморозь, туманы. В Казани и ее окрестностях в году бывает в среднем около 10 дней с гололедом и более 20 дней с изморозью. К неблагоприятным проявлением климата в зимний период можно отнести сравнительно длительные промежутки времени с очень низкими температурами. Сильные продолжительные морозы отмечались в январе и феврале 2006 года.

Рельеф, гидрография, растительность, почвенный и снежный покров, вызывает территориальную пестроту в распределении отдельных климатических показателей. Однако эти климатические различия укладываются в рамки более крупной зоны, черты климата которой определяются радиационными и циркуляционными факторами. Влияние рельефа на ряде показателей климата прослеживается довольно четко. И в этом отношении первостепенное значение оказывают такие стороны рельефа, как его абсолютная высота, преобладающие уклоны, ориентировка их по отношению к господствующим потокам воздуха, а так же расчлененность, воздействие которой проявляется, прежде всего, в создании микроклиматических различий.(Климат Казани и его изменения в современный период, 2007)

Геологическое строение планеты имеет прямую связь с образованием земной коры. Геология планеты началась с момента образования коры. Ученые, проанализировав древние горные породы, пришли к выводу, что возраст литосферы Земли составляет 3,5 миллиарда лет. Ключевые виды тектонических структур на суше - геосинклинали и платформы. Они серьезно отличаются друг от друга.

Платформы - большие и устойчивые участки земной коры, которые составлены из кристаллического основания и относительно молодых горных пород.

В большинстве случаев на платформах нет горных образований и действующих вулканов. Здесь не часто можно увидеть землетрясения, а вертикальные движения не могут развить высокую скорость. Кристаллическое основание Русской платформы формировалось в протерозойскую и архейскую эры, то есть два миллиарда лет назад. В эту эпоху планета претерпевала серьезные преобразования, а горы стали их логичным итогом.

Кристаллические сланцы, кварциты, гнейсы м другие древние породы превратили их в складки. В эпоху палеозоя горы стали ровнее, их поверхности медленно колебались.

Когда поверхность оказывалась ниже границы древнего океана, начинался процесс морской трансгрессии и накопления морских осадков. Осадочные горные породы, такие как глина, соль, известняк, интенсивно накапливались. Когда суша освобождалась от воды, накапливались красноцветные пески. Если в мелководных лагунах накапливался осадочный материал, здесь же концентрировались бурый уголь и соль.

В эпоху палеозоя и мезозоя кристаллические породы перекрывались мощным осадочным чехлом. Для подробного анализа этих горных пород необходимо производить бурение скважин, чтобы извлечь керн. Специалисты могут провести тщательное исследование геологического строения, занимаясь изучением природного обнажения горных пород.

Наравне с классическими геологическими исследованиями современной наукой активно применяются аэрокосмические и геофизические исследовательские методы. Повышение и понижение российской территории, создание континентальных условий спровоцированы тектоническими движениями, природу которых до сих пор не удалось объяснить. Но связь тектонических процессов с теми, что происходят в недрах планеты, сомнению не поддается.

Геология выделяет несколько видов тектонических процессов:

  • Древние. Движения коры Земли, происходившие в эпоху палеозоя.
  • Новые. Движения коры Земли, происходившие в эпоху мезозоя и кайнозоя.
  • Новейшие. Движения земной коры, происходившие за последние несколько миллионов лет.

Новейшие тектонические процессы сыграли ключевую роль в формировании современного рельефа.

Особенности рельефа в России

Рельеф является совокупностью всех неровностей, которые есть на поверхности земли. Сюда следует включать также моря и океаны.

Рельеф выполняет важную роль в формировании климатических условий, распространении определенных групп животных и растений, сильно влияет на хозяйственную деятельность людей. По словам географов, рельеф - каркас природы. Рельеф на территории России удивляет разнообразием и сложностью своей структуры. Бескрайние равнины здесь сменяют цепи гор, межгорные котловины и вулканические конусы.

Снимки из космоса и физическая карта страны позволяют определить некоторые закономерности орографического рисунка территории государства. Орография - взаимное расположение рельефа по отношению друг к другу.

Особенности орографии России:

  • Территория на 60 процентов состоит из равнин.
  • Запад и центр страны ниже остальных частей. Граница между частями проходит по Енисею.
  • Горы располагаются по окраинам страны.
  • Территория наклоняется в сторону Северного Ледовитого океана. Об этом свидетельствует течение Северной Двины, Оби, Енисея и других крупных рек.

На российской территории есть равнины, которые считаются самыми крупными на планете - Русская и Западно-Сибирская.

Русская равнина отличается холмистым рельефом, чередованием возвышенностей и низменных участков. Северо-восток равнины выше остальных ее частей. Равнина возвышается над уровнем океана в этой части более чем на 400 метров. На юге равнины располагается Прикаспийская низменность. Это самая низкая часть равнины, возвышающаяся над уровнем океана только на 28 метров. Средний показатель высоты - 170 метров.

Рельеф Западно-Сибирской равнины не впечатляет разнообразием. Основная часть низменности расположена ниже Мирового океана на 100 метров. Средний показатель высоты равнины - 120 метров. Максимальные показатели высоты наблюдаются в северо-западной части равнины. Здесь располагается Северо-Совьинская возвышенность, благодаря которой равнина поднимается над океаном на 200 метров.

Уральский хребет выполняет роль водораздела между этими равнинами. Хребет не отличается большой высотой и шириной. Его ширина составляет не более 150 километров. Вершиной Урала считается Народная гора - ее высота составляет 1895 километров. Общая протяженность Уральских гор в южном направлении - около 2 тысяч километров.

Среднесибирское плоскогорье занимает третье место по площади среди равнин на территории России. Объект расположился между Енисеем и Леной. Средняя высота плоскогорья - 480 метров над океаном. Высочайшая точка равнины находится в зоне плато Путорана. Она расположена в 1700 метрах над океаном.

Плоскогорье в восточной части плавно переходит в Центрально-Якутскую низменность, а на севере - в Северо-Сибирскую равнину. Окраину страны на Юго-востоке занимают горные районы.

Высочайшие горы страны располагаются между Каспийский и Черным морями, в юго-западном направлении от Русской равнины. Здесь же находится и самая высокая точка во всей стране. Это гора Эльбрус. Ее высота достигает 5642 метра.

По южной окраине страны в восточном направлении проходят Саяны и горы Алтая. Вершина Саян - Мунку-Сардык, а Алтайских гор - Белуха. Плавно эти горы переходят в предбайкальские и забайкальские хребты.

Становой хребет связывает их с северо-вочстояными и восточными хребтами. Здесь обретаются хребты небольшой и средней высоты - Сунтар-Хаята, Верхоянский, Черского, Джугджур. Помимо них здесь есть и нагорья - Колымское, Корякское, Яно-Оймяконское, Чукотское. В южной стороне Дальнего Востока они соединяются со средними по высоте приамурскими и приморскими хребтами. Например, это Сихотэ-Алинь.

На крайнем Востоке России можно увидеть курильские и камчатские горы. В этих местах сосредоточены все активные вулканы России. Наиболее высокий из ныне активных вулканов - Ключевская Сопка. Десятую часть всей территории России занимают горы.

Полезные российские ископаемые

Россия является мировым лидером по запасам полезных ископаемых среди всех государств планеты. На сегодняшний день открыто 200 месторождений. Общая стоимость месторождений - около 300 триллионов долларов.

Российские полезные ископаемые по отношению к мировому запасу:

  • нефть - 12 процентов;
  • природный газ - 30 процентов;
  • уголь - 30 процентов;
  • калийные соли - 31 процент;
  • кобальт - 21 процент;
  • железные руды - 25 процентов;
  • никель - 15 процентов.

В недрах российской земли находятся рудные, нерудные и горючие полезные ископаемые.

В группу горючих ископаемых входят уголь, нефть, природный газ, горючие сланцы и торф. Крупнейшие месторождения в Сибири, Поволжье, Прибалтийском районе, на Кавказе, на полуострове Ямал.

В группу рудных ископаемых входят железная, марганцевые, алюминиевые руды, а также руды цветных металлов. Крупнейшие месторождения расположены в Сибири, Горной Шории, на Кольском полуострове, Дальнем Востоке, Таймыре и Урале.

Россия занимает второе место в мире по добыче алмазов после Южной Африки. В большом количестве на территории РФ добываются разнообразные драгоценные камни, минералы, строительные полезные ископаемые.

Тектонической основой Средней Сибири служит древняя Сибирская платформа, граница которой обычно проводится по северной окраине Среднесибирского плоского­рья. Тектоническое положение северной части Средней Сибири определяется неоднозначно. Долгое время территорию Таймы­ра и Северо-Сибирской низменности считали областью герцин- ской складчатости, затем в ее пределах стали выделять участки каледонской, байкальской и мезозойской складчатости. Все это нашло отражение на тектонических картах (1952, 1957, 1969 и 1978 гг.). Однако последними работами по тектонике Таймыра установлено, что в его строении, как и в строении Анабарского массива, принимают участие метаморфические комплексы фун­дамента, перекрытые протерозойскими отложениями. Это да­ло основание М.В. Муратову (1977 г.) отнести Таймыр к катего­рии щитов, включив его в состав Сибирской платформы. Все большее число исследователей поддерживают эту точку зрения.

Таким образом, территория Средней Сибири практически совпадает с Сибирской платформой. Лишь юго-восточная часть платформы, ее Алданский щит, лежащий в основе Алданского нагорья, рядом исследователей (С.С. Воскресенский, 1968; Н.И. Михайлов, 1961; Н.И. Михайлов, Н.А. Гвоздецкий, 1976; и др.) не включается в состав Средней Сибири. Основанием для этого служат существенные различия в современной природе Алданского нагорья и Средней Сибири, обусловленные тем, что его развитие на протяжении длительной мезокайнозойской ис­тории существенно отличается от развития остальной террито­рии платформы и сближается с северобайкальскими нагорьями.

Фундамент платформы сложен архейскими и протеро­зойскими складчатыми комплексами и имеет расчлененный рель­еф. В Анабарском и Таймырском массивах породы фундамента (гнейсы, кварциты, мраморы, граниты) выходят на поверхность. Области неглубокого залегания фундамента (до 1-1,5 км) распо­лагаются на окраинах Анабарского массива, северном склоне Алданского щита, на западной окраине платформы (Туруханское поднятие, склон Енисейского массива) и пересекают территорию с северо-востока на юго-запад от низовий Лены к Восточному Сая- ну. Складчатые структуры Енисейского поднятия были созданы в позднем протерозое (байкальская складчатость).

Поднятия фундамента разделены обширными и глубокими впадинами: Тунгусской, Пясинско-Хатангской, Ангаро-Ленской и Вилюйской, которая на востоке смыкается с Предверхоянским краевым прогибом. Впадины заполнены осадочными толщами большой мощности (8-12 км). Лишь в Ангаро-Ленском проги­бе мощность чехла не превышает 3 км.

Формирование осадочного чехла Сибирской платформы началось в нижнем палеозое общим погружением, вызвавшим крупную морскую трансгрессию. Для отложений кембрия ха­рактерна большая фациальная изменчивость и перерывы в осадконакоплении, свидетельствующие о довольно большой под­вижности территории. Наряду с конгломератами, песчаниками и известняками по окраинам платформы в морских лагунах на­капливались красноцветные толщи, содержащие соли и гипсы. Но преобладают среди нижнепалеозойских отложений извест­няки и доломиты, выходящие на поверхность на обширных про­странствах.

В конце силура почти вся территория испытала поднятие, явившееся отзвуком каледонской складчатости на соседних с платформой территориях. Морской режим сохранился лишь в Пясинско-Хатангской впадине и в северо-западной части Тун­гусской синеклизы. В течение девона территория платформы продолжала оставаться сушей. В раннем девоне заложился Юж­нотаймырский авлакоген, где накопился полный разрез девонских отложений.

В верхнем палеозое в условиях медленного погружения на обширной территории Тунгусской и Пясинско-Хатангской си- неклиз устанавливается озерно-болотный режим. Здесь нако­пились мощные пласты тунгусской свиты. Нижняя часть этой свиты представлена так называемой продуктивной толщей - чередованием песчаников, глинистых и углистых сланцев, алев­ролитов и прослоек каменного угля. Мощность этой толщи до 1,5 км. К ней приурочены промышленные пласты каменного уг­ля, распространенные на огромной территории.

Продуктивная угленосная то"лща пронизана многочисленны­ми интрузиями основных магматических пород и перекрыта вул­каногенной толщей, состоящей из туфов, туфобрекчий, лавовых покровов с прослоями осадочных пород. Ее формирование свя­зано с проявлением платформенного трещинного магматизма в конце перми - триасе, обусловленного активизацией разломов и дроблением фундамента, совпавшего с тектоническими дви­жениями в соседнем Урало-Монгольском поясе. Созданные им эффузивные и интрузивные образования основного состава носят названия траппов, а сам магматизм - траппового магматизма.

Траппы - характерная особенность геологического строения Сибирской платформы, резко отличающая ее от Рус­ской платформы. Формы залегания траппов разнообразны. В их распределении прослеживается четкая закономерность. В Ку- рейской впадине - наиболее глубоко опущенной северо-запад­ной части Тунгусской синеклизы преобладают мощные базаль­товые (лавовые) покровы. Секущие интрузии (дайки, жилы, штоки) господствуют в центральной части синеклизы. Лакколи­ты и пластовые интрузии (силлы) наиболее характерны для ее западной, восточной и южной окраин, где проходят главные зо­ны разломов, отделяющих синеклизу от других структур. Здесь же сосредоточена и основная масса трубок взрыва (кольцевых структур). Вне пределов Тунгусской синеклизы траппы встречаются значительно реже (на Таймыре, по северной окраи­не Анабарского массива).

Излившаяся и внедрившаяся базальтовая магма пронизала породы платформы, создала еще более жесткий и устойчивый каркас, поэтому западная часть в дальнейшем почти не подвер­галась прогибаниям.

На рубеже палеозоя и мезозоя произошли глыбовые движе­ния, разрывы и складчатость в Южнотаймырском авлакогене.

В позднем мезозое большая часть Средней Сибири испыты­вала поднятие и представляла собой область сноса. Особенно ин­тенсивно воздымались Курейская впадина, превратившаяся в обращенную морфоструктуру - плато Путорана, Анабарский свод и северная часть Енисейского поднятия. Происходит проги­бание в Пясинско-Хатангской синеклизе, вдоль восточной и юж­ной окраин платформы. Оно сопровождается кратковременной морской трансгрессией, не заходившей далеко на юг, поэтому среди юрских отложений резко преобладают континентальные угленосные толщи с промышленными запасами углей. Меловые отложения распространены лишь в Пясинско-Хатангской си­неклизе (аллювиально-озерные слабоутлистые фации), Вилюй- ской синеклизе и Предверхоянском прогибе, где представлены мощной (до 2000 м) аллювиальной грубообломочной толщей.

К концу мезозоя вся территория Средней Сибири представ­ляла собой компактную сушу, являющуюся областью денудации и формирования поверхностей выравнивания и коры выветри­вания.

Кайнозой характеризовался дифференцированными к о- лебательными движениями с общей тенденцией к поднятию. В связи с этим резко преобладали процессы раз­мыва. Происходило расчленение поверхности речной сетью. Палеогеновые отложения встречаются редко, представлены ал­лювиальными глинами, песками и галечниками и связаны с остатками древних речных долин. В конце неогена и в четвер­тичное время на фоне общего поднятия возросла дифференци- рованность вертикальных движений. Наиболее интенсивно поднимались Бырранга, Путорана, Анабарский и Енисейский массивы. Испытывала опускание восточная часть Вилюйской синеклизы, где в течение неогена накопилась толща крупнооб­ломочных красноцветных галечников мощностью 3-4 км.

В целом для Сибирской платформы характерна большая акти­визация неотектонических движений по сравнению с Русской. Это нашло свое отражение в ее более высоком гипсометричес­ком положении, а также в преобладании среди морфоструктур высоких плато и равнин. В результате новейших тектонических движений произошла перестройка древней гидрографической сети. Об этом свидетельствуют сохранившиеся на водоразделах остатки речных систем. Общее поднятие территории обуслови­ло глубокое врезание рек и формирование серии речных террас.

В начале четвертичного периода суша занимала наибольшие площади и простиралась на север до границ современного шель­фа. На фоне общего похолодания, начавшегося в неогене, это вызвало усиление континентальности и суровости климата Средней Сибири, уменьшение количества осадков. Во время среднеплейстоценовой бореальной трансгрессии Северо-Си- бирская низменность и опустившиеся окраины Таймыра были затоплены морскими водами. Горы Бырранга и Северная Земля представляли собой невысокие острова. Море вплотную подсту­пало к северным и северо-западным подножиям Среднесибир­ского плоскогорья. Это вызвало увеличение количества осадков и развитие оледенения. Центром оледенения были плато Путо­рана и Таймыр. В настоящее время установлено, что максималь­ное (Самаровское) оледенение было покровным. Его граница достаточно отчетливо просматривается лишь в юго-западной части: устье Подкаменной Тунгуски, верховья Вилюя и Мархи и далее к долине Оленека. Восточный отрезок границы не про­слеживается, Тазовское оледенение имело меньшие размеры.

После кратковременной регрессии моря, во время которой не только Таймыр, но и Северная Земля причленились к суше, начинается новая морская трансгрессия. Развивается Зырянское (верхнеплейстоценовое) оледенение. Накопление льда происхо­дило на Таймыре, плато Путорана и Анабарском массиве. Грани­ца максимального распространения льдов во время Зырянско­го оледенения проходила от устья Нижней Тунгуски в верховья реки Мойеро (правый приток Котуя), огибала с юга Анабарский массив, шла к нижнему течению реки Анабар и к восточной око­нечности Таймыра. Последней фазой деградации верхнеплей­стоценового оледенения считается горно-долинная Сартанская стадия, следы которой зафиксированы в центральной части пла­то Путорана, на Таймыре.

Главной особенностью плейстоценовых оледенений в Сред­ней Сибири явилась малая мощность, а отсюда и малая подвиж­ность лесника. Море, подступавшее к подножию Среднесибир­ского плоскогорья, было холодным, поэтому формировавшийся над ним воздух содержал мало влаги. Основная масса осадков выпадала в северо-западной части - на Таймыре и плато Путо­рана. К югу и востоку количество осадков быстро уменьшалось, резко сокращалась и мощность ледника. Эти ледники были « пас­сивными ». При малой подвижности ледников была мала и их разрушительная деятельность. Следовательно, в теле ледников содержалось мало моренного материала и он был слабо окатан, т. е. сходен со склоновыми делювиальными отложениями. Малая рельефообразующая роль среднесибирских ледников обуслови­ла и значительно более слабую сохранность следов их сущест­вования, чем на Русской равнине да и в Западной Сибири. По­этому многие вопросы, связанные с характером, количеством, границами и возрастом оледенений Средней Сибири, до сих пор остаются дискуссионными.

Огромные площади внутренних частей Средней Сибири на­ходились в условиях перигляциального режима. Холодный сухой климат способствовал глубокому промерзанию почв и грунтов. Формировалась многолетняя мерзлота, а местами и подземные льды. Особенно интенсивно шло образо­вание мерзлоты в конце среднего плейстоцена, в период регрессии моря, когда в связи с увеличением площади суши в северных широтах резко усилилась континентальность и су­хость климата Средней Сибири.

Сохраняющаяся с неогена тенденция к похолоданию климата вела к постепенному обеднению растительности Средней Сибири. Богатые по видовому составу хвойно-широко- лиственные леса плиоцена сменились в нижнем плейстоцене обед­ненной берингийской темнохвойной тайгой с примесью широко­лиственных пород (липы, дуба, граба, лещины) в южных районах.

Дальнейшее похолодание и развитие оледенений привело к широ­кому распространению тундр и лесотундр, а в южных районах - своеобразных холодных лесостепей, представленных чередова­нием лиственнично-березово-сосновых лесов с открытыми тунд- рово-степными пространствами. Общее потепление климата в межледниковье благоприятствовало продвижению лесов на север.

В поздне- и послеледниковое время происходило общее под­нятие территории, в климате было несколько теплых и холод­ных фаз, сухих и влажных периодов, связанных с изменением циркуляционных условий (преобладанием меридиональной циркуляции, или западного переноса). Это обусловило значительную подвижность природных зон на территории Средней Сибири. Увеличение континентальное™ климата спо­собствовало широкому развитию травянистой растительности степного типа и накоплению солей в почвах. Уменьшение кон­тинентальное™ и некоторое увеличение осадков вело к смене степной растительности лесами и лесостепями.

Рельеф

Большую часть территории занимает Среднесибирское плоскогорье, сформировавшееся в западной части Сибирской платформы, структуры которой были жестко спаяны в резуль­тате траппового магматизма. Вся эта территория в мезокайно- зое устойчиво поднималась как единая структура и в рельефе представлена крупнейшей орографической единицей. Для Сред­несибирского плоскогорья характерна значительная приподня­тость и контрастность рельефа. Высоты в его пределах колеб­лются от 150-200 до 1500-1700 м. Средняя высота составляет 500-700 м. Отличительной чертой плоскогорья является сочета­ние преимущественно плоского или пологоволнистого сту­пенчатого рельефа междуречий с глубоко врезанными круто­склоновыми (часто каньонообразными) долинами рек.

По характеру распределения высот и расчленения Средне­сибирское плоскогорье весьма неоднородно. В его пределах выделяются более дробные орографические единицы. Мак­симальных высот плоскогорье достигает на северо-западе, где возвышаются плато Путорана (до 1701 м) и Сыверма (более 1000 м). К ним примыкают Анабарское плоскогорье, Вилюйское и Тунгусское плато с высотами до 850-950 м.

От Центральноякутской равнины, расположенной к восто­ку от Среднесибирского плоскогорья и приуроченной к Вилюй- ской синеклизе и Предверхоянскому прогибу, через террито­рию плоскогорья к подножию Саяна протягивается понижен­ная полоса (300-500 м). В ее пределах находятся Приангарское и Центральнотунгусское плато. К юго-востоку от этой полосы поверхность поднимается. Здесь расположены Ангарский кряж и Лено-Ангарское плато с высотой до 1000-1100 м. К северо- востоку они переходят в Приленское плато, ограничивающее с юга Центральноякутскую равнину. Таким образом, по высотному по­ложению Среднесибирское плоскогорье отчетливо разделяется на три части: северо-западную - наиболее возвышенную, централь­ную - пониженную и юго-восточную - приподнятую.

На крайнем юго-востоке Средней Сибири на северном скло­не Алданского щита расположено Лено-Алданское плато. На юго-западе находится Енисейский кряж, соответствующий докембрийскому поднятию и представленный низкими остан- цовыми горами и расчлененной возвышенностью со сравнитель­но резкими очертаниями. Средние высоты 600-700 м, макси­мальная - 1125 м.

На крайнем севере страны поднимаются сильно выровнен­ные невысокие массивы гор Бырранга, приуроченные к Таймыр­скому щиту платформы. В западной и северной частях они пред­ставлены отчетливо выраженными грядами с высотой до 350- 550 м, а на юго-востоке - низкогорными глыбовыми массива­ми с платообразной поверхностью высотой 800-900 м. Лишь от­дельные вершины поднимаются до 1000-1146 м. На юге горы Бырранга обрываются по линии разлома крутым уступом над холмисто-увалистыми равнинами Северо-Сибирской низменно­сти, занимающей пространство между горами и северным уступом Среднесибирского плоскогорья. Она соответствует двум тектоническим структурам: Предтаймырскому прогибу и Пясинско-Хатангской синеклизе. Преобладающие высоты низ­менности составляют 100-200 м, но крупные одиночные плос­ковершинные останцовые возвышенности и денудационные гряды в ее пределах достигают 550-650 м.

Тесная связь между орографическими элементами и текто­ническими структурами позволяет выделить крупные мор­фоструктуры, которые могут быть объединены в четыре группы: плоскогорья, кряжи, низко- и среднегорные массивы на выступах кристаллического фундамента; пластовые возвы­шенности и плато на осадочных палеозойских породах; вулка­нические плато, связанные с мощными проявлениями траппо- вого магматизма; аккумулятивные и пластово-аккумулятивные равнины. Первые три группы объединяют морфоструктуры, в формировании которых преимущественную роль играли де­нудационные процессы на фоне устойчивых или преобладаю­щих поднятий, четвертую - морфоструктуры, созданные акку­муляцией рыхлого материала на территориях, отстававших в поднятии и испытывавших новейшие опускания.

В первую группу входят Анабарское плоскогорье, Енисейский кряж и горы Бырранга. Это плоскогорье, кряжи и массивы, с вы­сотами от 500-800 до 1150 м с достаточно расчлененным релье­фом, приуроченные к положительным структурам фундамента: щитам и поднятиям.

Пластовые возвышенности и плато развиты на горизон­тально или слабо наклонно залегающих нижнепалеозойских по­родах. Они приурочены к склонам щиток (Анабарского и Ал­данского) и моноклизам, а также к Ангаро-Ленскому прогибу (обращенная морфоструктура). Длительная денудация на фоне устойчивых поднятий привела к выработке в пределах плато своеобразного столово-ступенчатого рельефа. Плато обычно имеют высоты 400-600 м (Приангарское, Приленское и др.), но Ангаро-Ленское в отдельных местах превышает 1000-1100 м.

Вулканические плато распространены в Тунгусской синек­лизе и пограничных с ней районах, где проявился пермско-триа- совый трапповый магматизм. В связи с тем что формы проявле­ния магматизма были различны, среди вулканических плато выделяются лавовые, или эффузивные (Путорана, Сыверма), туфогенные (Центральнотунгусское) и трапповые, образован­ные пластовыми интрузиями (Тунгусское, Вилюйское и др.). Встречаются плато смешанного типа, одна часть которых пере­крыта лавами, а другая бронируется пластовой интрузией или сложена туфогенным материалом. Высоты вулканических пла­то бывают разными. Самые высокие, лавовые плато, достигают 1000-1700 м, а самые низкие - туфогенные (Центрально-Тун­гусское плато лежит на высоте 300-400 м).

Аккумулятивные (Северо-Сибирская низменность) и пласто- во-аккумулятивные (Центральноякутская, Иркутско-Черемхов- ская) равнины в четвертичное время продолжают прогибаться или отстают в поднятии от окружающих территорий, поэтому здесь четвертичные отложения достигают наибольших в Сред­ней Сибири мощностей: до 100-150 м - на Центральноякут­ской и Иркутско-Черемховской, и до 250-300 м - на Северо- Сибирской низменностях.

Среди морфоструктур Средней Сибири преобладают унаследованные (прямые). Кряжи и горные массивы приурочены к поднятиям фундамента, низменности - к синек- лизам и предгорным прогибам, возвышенные наклонные рав­нины (плато) - к моноклизам (Алданской, Приангарской). Это обусловлено тем, что новейшие тектонические движения обно­вили древние структуры. Однако не везде направленность но­вейших движений совпадала с направленностью более ранних тектонических движений. В таких местах наблюдается несоот­ветствие между древними структурами и современным уст­ройством поверхности. Обращенные морфоструктуры представлены исключительно возвышенностями на месте отри­цательных структур: Путорана, Сыверма и Тунгусское плато отвечают наиболее глубоким впадинам Тунгусской синеклизы. Встречаются в Средней Сибири и сложные полупрямые и полу­обращенные морфоструктуры (Приленское плато, Центрально- тунгусское плато и др.).

Средняя Сибирь пережила длительный период континен­тального развития, поэтому на ее территории преобладает де­нудационный рельеф. Новейшие поднятия и чередование различных по устойчивости пород, слагающих поверхность, обусловили его ярусность, или ступенчатость. Поверхность расчленена густой сетью речных долин. Максимальная глубина вреза долин (до 1 ООО м) характерна для западной части плато Пу­торана, а минимальная (50-100 м) для Центрально-Тунгусского плато, Центральноякутской и Северо-Сибирской низменностей. Большинство долин каньонообразные, асимметричные.

Важнейшей отличительной особенностью речных долин Средней Сибири является большое число террас (шесть-девять), свидетельствующее об их древности и о неоднократных текто­нических поднятиях территории. Высота верхних террас дости­гает 180-250 м. Лишь Таймыр и Северо-Сибирская низменность характеризуются слабой террасированностью и молодостью речных долин. Даже крупные реки имеют здесь не более трех- четырех террас.

Почти для всей территории Средней Сибири характерна криогенная (мерзлотная) морфоскульптура. Формы мерзлотного рельефа обнаруживают региональную приурочен­ность. На западе, где преобладают плотные коренные породы, а плащ четвертичных отложений несплошной и маломощный, раз­виты термическая денудация, термическая планация, связанная с оседанием, выравниванием поверхности при сезонном про- таивании мерзлых грунтов и льда в них, и солифлюкция. На севере и востоке, где распространены рыхлые отложения, - тер­мокарстовые, солифлюкционные формы, бугры пучения и гид­ролакколиты (булгунняхи).

Многолетняя мерзлота затрудняет современные эрозионные процессы и препятствует развитию карста, поэтому карстовые формы рельефа в Средней Сибири обладают значительно мень­шим распространением, чем можно было бы ожидать в связи с обилием карстующихся пород. Более широко они развиты в юж­ной части страны, где отсутствует сплошная мерзлота. Так, на Лено-Ангарском и Лено-Алданском плато имеется масса карсто­вых воронок, колодцев, слепых долин и т. д.

С активным физическим выветриванием в условиях резко континентального климата связано обилие глыбово-каменистых россыпей, каменных потоков - курумов и осыпей в горных мас­сивах, на поверхностях плато и склонах речных долин.

Несмотря на большую протяженность территории с севера на юг, четкой зональности в размещении морфоскульптур, в от­личие от Западной Сибири, здесь не прослеживается. На всем пространстве Средней Сибири господствующими морфоскульп- турами являются эрозионная и криогенная. Это обусловлено характером тектонических движений и особенностями сурового на протяжении всего четвертичного периода климата. В север­ной части страны к господствующим морфоскульптурам при­соединяется реликтовая древнеледниковая, а на юге шире рас­пространены карстовые формы.

Климат

Главной чертой климата Средней Сибири является резкая континентальность, обусловленная положением территории в средней части Северной Азии. Она находится на большом уда­лении от теплых морей Атлантического океана, ограждена гор­ными цепями от влияния Тихого и подвержена воздействию Се­верного Ледовитого океана. Континентальность климата нарас­тает с запада на восток и с севера на юг, достигая наивысшей степени в Центральной Якутии.

Для климата Средней Сибири характерны большие годовые амплитуды среднемесячных (50-65°С) и экстремальных (до 102°С) температур, короткие переходные периоды (один-два месяца) с большими суточными амплитудами (до 25-30°С), очень неравномерное внутригодовое распределение осадков и их относительно небольшое количество. Большие различия меж­ду зимними и летними температурами воздуха в Средней Сиби­ри обусловлены прежде всего сильным переохлаждением по­верхности зимой.

Суммарная радиация изменяется в пределах страны от 65 ккал/см 2 в год в северной части Таймыра до 110 ккал/см 2 в год в районе Иркутска, а радиационный баланс - соответствен­но от 8 до 32 ккал/см 2 в год. С октября по март радиационный баланс на большей части территории отрицательный. В январе в северной части страны солнечная радиация практически не поступает, в районе Якутска составляет всего 1-2 ккал/см 2 , а на крайнем юге не превышает 3 ккал/см 2 . В летнее время при­ток солнечной энергии мало зависит от широты, так как умень­шение угла падения солнечных лучей по направлению к северу почти компенсируется увеличением продолжительности сол­нечного сияния. В итоге суммарная радиация на всей террито­рии Средней Сибири около 15 ккал/см 2 в месяц, лишь в Цент­ральной Якутии она увеличивается до 16 ккал/см 2 .

Зимой Средняя Сибирь находится в сфере воздействия Ази­атского максимума, отрог которого проходит вдоль юго-вос­точной окраины страны, захватывая Центральную Якутию. Дав­ление постепенно понижается к северо-западу, по направлению к ложбине, отходящей от Исландского минимума. Почти на всей территории, за исключением северо-запада, зимой господствует антициклональная ясная, почти безоблачная, морозная и сухая, часто безветренная погода. Зима длится пять-семь месяцев. Дли­тельное пребывание мало подвижных антициклонов над терри­торией Средней Сибири обусловливает сильное выхолаживание поверхности и приземного слоя воздуха, возникновение мощных температурных инверсий. Этому способствует и характер релье­фа: наличие глубоких речных долин и котловин, в которых застаи­ваются массы холодного тяжелого воздуха. Господствующий здесь континентальный воздух умеренных широт отличается очень низ­кими температурами (даже более низкими, чем арктический воздух) и малым содержанием влаги. Поэтому январские темпе­ратуры в Средней Сибири на 6-20°С ниже среднеширотных.

Устойчивость зимней антициклональной погоды уменьшает­ся в направлении с востока и юго-востока на запад и северо-за­пад по мере удаления от оси повышенного давления. Особенно возрастает повторяемость циклональной погоды на северо-за- паде в связи с активным циклогенезом на Таймырской ветви арк­тического фронта. Циклоны вызывают усиление ветра, увели­чение облачности и осадков, повышение температуры воздуха.

Самые низкие средние температуры января харак­терны для Центральноякутской низменности (-45°С) и северо­восточной части Среднесибирского плоскогорья (-42...-43°С). В отдельные дни термометр опускается в долинах и котловинах этих районов до -68°С. К северу температуры возрастают до - ЗГС, а к западу до -26...-30°С. Это связано с меньшей устойчивостью антициклональной погоды и более частым втор­жением арктического воздуха, особенно со стороны Баренцева моря. Но наиболее значительно температуры увеличиваются к юго-западу в связи с возрастанием прихода солнечной энергии. Здесь, в Предсаянье, средние температуры января составляют -20,9°С (Иркутск), - 18,5°С (Красноярск).

Благодаря большой сухости воздуха, обилию ясных сол­нечных дней и постоянству (малой изменчивости) погоды низ­кие температуры воздуха переносятся сравнительно легко не только старожилами Сибири, но и приезжающими. Однако ис­ключительная суровость и длительность зимы требуют больших затрат на поддержание комфортных условий (тепла) в жилищах, удорожают капитальное строительство и отопление.

Осадков зимой выпадает мало, около 20-25% годовой суммы. Это составляет на большей части территории около 100- 150 мм, а в Центральной Якутии менее 50 мм. Поэтому, несмот­ря на длительные зимы, а также на практически полное отсутст­вие оттепелей, мощность снежного покрова в Средней Сибири невелика. В Центральной Якутии и в Предсаянье в конце зимы мощность снежного покрова менее 30 см, на край­нем севере в связи с увеличением циклонической деятельности она возрастает до 40-50 см. На большей части территории мощ­ность снежного покрова 50-70 см, в приенисейской части, в районе Нижней и Подкаменной Тунгуски, - более 80 см.

Весна в Средней Сибири поздняя, дружная и короткая. Почти на всей территории она наступает во второй половине апреля, а на севере - в конце мая-начале июня. Таяние снегов и нараста­ние температур идут быстро, но часто наблюдаются возвраты холодов в связи с прорывами арктического воздуха до южных окраин Средней Сибири.

Летом в связи с прогреванием поверхности над территорией Средней Сибири устанавливается пониженное давление. Сюда устремляются воздушные массы с Северного Ледовитого океа­на, усиливается западный перенос. Но холодный арктический воздух, поступая на сушу, очень быстро трансформируется (прогревается и удаляется от состояния насыщения) в континен­тальный воздух умеренных широт. Изотермы июля проходят субширотно. Особенно отчетливо это видно в пределах Северо- Сибирской низменности.

Самая низкая температура летом наблюдается на мы­се Челюскин (2°С). При движении к югу июльские температу­ры нарастают от 4°С у подножия гор Бырранга до 12°С близ ус­тупа Среднесибирского плоскогорья и до 18°С в Центральной Якутии. На низменных равнинах Средней Сибири отчетливо прослеживается влияние внутриматерикового положения на распределение летних температур. Здесь средняя температура июля выше, чем на тех же широтах в Западной Сибири и на ев­ропейской части России. Например, в Якутске, расположенном близ 62°С с.ш., средняя температура июля 18,7°С, а в Петроза­водске, находящемся на той же широте, почти на 3°С ниже (15,9°С). В пределах Среднесибирского плоскогорья эта законо­мерность затушевывается влиянием рельефа. Высокое гипсо­метрическое положение обусловливает меньшее прогревание поверхности, поэтому на большей части его территории сред­няя температура июля составляет 14-16°С и лишь у южных ок­раин достигает 18-19°С (Иркутск 17,6°, Красноярск 18,6°). С уве­личением высоты местности летние температуры понижаются, т. е. на территории плоскогорья прослеживается вертикальная дифференциация температурных условий, особенно отчетливо выраженная на плато Путорана.

Летом резко возрастает повторяемость циклонов. Это влечет за собой увеличение облачности и осадков особенно во второй половине лета. Начало лета засушливое. В июле-августе обычно выпадает в 2-3 раза больше осадков, чем за весь холодный пери­од. Осадки выпадают чаще в виде продолжительных обложных дождей. Над большей частью Средней Сибири проходят цикло­ны арктического фронта, а над югом - циклоны Монгольской ветви полярного фронта.

Конец августа для большей части территории можно считать началом осени. Осень короткая. Понижение температур идет очень быстро. В октябре даже на крайнем юге средняя месячная температура отрицательная и формируется повышенное давление.

Основную массу осадков в виде дождя и снега прино­сят воздушные массы, поступающие с запада и северо-запада. Поэтому наибольшая годовая сумма осадков (более 600 мм) ха­рактерна для западной, приенисейской части Средней Сибири. Обострению циклонов и увеличению осадков в этих районах способствует и орографический барьер - уступ Среднесибир­ского плоскогорья. Здесь на наиболее высоких плато северо-за­падной части (Путорана, Сыверма, Тунгусском) выпадает мак­симальное для Средней Сибири количество осадков - свыше 1000 мм. К востоку годовая сумма осадков уменьшается, состав­ляя в бассейне Лены менее 400 мм, а в Центральной Якутии всего около 300 мм. Здесь испаряемость в 2,5 раза превышает годовую сумму осадков. Коэффициент увлажнения в районе низовий Алдана и Вилюя составляет всего 0,4. В Предсаянье увлажнение неустойчивое, коэффициент увлажнения несколько меньше единицы. На остальной территории Средней Сибири годовая сумма осадков больше или близка к испаряемости, поэтому ув­лажнение избыточное.

От года к году количество осадков весьма существенно ко­леблется. Во влажные годы оно в 2,5-3 раза превышает сумму осадков сухих лет.

Недостаточное увлажнение в Центральной Якутии, районах, расположенных на 60-64° с.ш., - одно из следствий резкой кон- тинентальности климата, достигающей здесь наибольшей сте­пени. На больших пространствах Средней Сибири превышение годовых амплитуд над средними для широт составляет 30-40°С.

На земном шаре почти нет мест (в России - один Северо- Восток), которые могут соперничать со Средней Сибирью по степени континентальное™ климата. Многие особенности при­роды Средней Сибири связаны с резкой континентальностью ее климата, с характерными для нее большими контрастами сезонов года. Это существенно отражается на процессах вывет­ривания и почвообразования, на гидрологическом режиме рек и рельефообразующих процессах, на развитии и размещении растительности, на всем облике природных комплексов Сред­ней Сибири.

Район находится в центральной части Московской синеклизы. В его геологическом строении принимают участие сильно дислоцированные кристаллические породы архейского и протерозойского возраста, а также осадочный комплекс, представленный отложениями рифея, венда, девона, карбона, юры, мела, неогена и отложениями четвертичной системы.

В связи с тем, что описание данной территории ведется по имеющейся гидрогеологической карте масштаба 1: 200000 геологическое строение района дается только до московского яруса каменноугольной системы.

Стратиграфия и литология

Современной эрозионной сетью вскрыты четвертичные, меловые, юрские отложения и породы верхнего и среднего отделов каменноугольной системы (приложение 1).

Палеозойская эратема.

Каменноугольная система.

Средний отдел-Московский ярус.

Нижнемосковский подъярус.

Отложения московского яруса среднего карбона развиты повсеместно. Их общая мощность 120-125 м. Среди отложений московского яруса выделяются: верейский, каширский, подольский и мячковский горизонты.

Верейский горизонт () распространен повсеместно. Представлен пачкой жирных и алевритистых глин вишнёво-красной или кирпично-красной окраски. Встречаются прослои известняка, доломита и кремня мощностью до 1м. Верейский горизонт расчленяется на три толщи: Шатские слои (глины красные с охристыми пятнами); Альютовские толщи (мелкозернистый красный песчаник, глина кирпично-красная, глина с прослоями алеврита); Ордынские слои (красные глины с брахиоподами, зеленоватые доломиты, белые доломиты со следами червей). Общая мощность верейского горизонта составляет на юге от 15-19 м. Определены: Choristites aliutovensis Elvan.

Каширский горизонт () сложен светло-серыми (до белых) и пестроцветными доломитами, известняками, мергелями и глинами общей мощностью 50-65 м. По литологическим признакам каширская толща разделена на четыре толщи, сопоставляемые с нарской (16 м), лопаснинской (14 м), ростиславльской (11м) и смедвинской толщами (13 м) южного крыла синеклизы. В кровле каширского горизонта залегают ростиславльские пестроцветные глины с тонкими прослоями известняков и мергелей общей мощностью 4-10 м. В центральной части территории ростиславльская толща отсутствует. Каширские отложения содержат фауну: Choristites sowerbyi Fisch., Marginifera kaschirica Ivan., Eostafella kaschirika Rails., Parastafella keltmensis Raus.

Верхнемосковский подъярус развит повсеместно и подразделяется на подольский и мячковский горизонты.

Отложения подольского горизонта () в пределах доюрской долины размыва залегают непосредственно под мезозойскими и четвертичными отложениями. На остальной территории они перекрыты отложениями мячковского горизонта, образуя с ним единую толщу, представленную серыми трещиноватыми известняками с прослоями глины. На отложениях каширского горизонта подольская толща залегает со стратиграфическим несогласием. Подольский горизонт представлен белыми, желтоватыми и зеленовато-серыми тонко - и мелкозернистыми органогенными известняками с подчиненными прослоями доломитов, мергелей и глин зеленоватого цвета с конкрециями кремня, общей мощностью 40-60 м. Определены: Choristites trauscholdi stuck., Ch. jisulensis Stuck., Ch. mosquensis Fisch., Archaeocidaris mosquensis Ivan.

Мячковский горизонт () в южной части рассматриваемой территории залегает непосредственно под мезозойскими и четвертичными отложениями, в северной и северо-восточной частях перекрыт верхнекаменноугольными отложениями. В районе д. В. Мячково и у с. Каменно-Тяжино отложения мячковского возраста выходят на поверхность. В долине р. Пахры и ее притоков мячковские отложения отсутствуют. Мячковский горизонт залегает со стратиграфическим несогласием на отложениях подольского горизонта.

Представлен горизонт, в основном, чистыми органогенными известняками, иногда доломитизированными с редкими прослоями мергелей, глин и доломитов. Общая мощность отложений не превышает 40м. Мячковские отложения содержат обильную фауну: брахиоподы Choristites mosquensis Fish., Teguliferinamjatschkowensis Ivan.

Верхний отдел.

Верхнекаменноугольные отложения развиты в северной и северовосточной частях рассматриваемого района. Они вскрываются под четвертичными и мезозойскими образованиями, а в районе г. Гжель выходят на дневную поверхность. Верхний карбон представлен отложениями касимовского и гжельского ярусов.

Касимовский ярус.

Отложения касимовского яруса распространены в северо-восточной части территории. На мячковских отложениях залегают с размывом.

В касимовском ярусе выделяются кревякинский, хамовнический, дорогомиловский и яузский горизонты.

Кревякинский горизонт в нижней части сложен известняками и доломитами, в верхней - пестроцветными глинами и мергелями, являющимися региональным водоупором. Мощность горизонта до 18 м.

Хамовнический горизонт сложен в нижней части карбонатными породами, в верхней - глинисто-мергелистыми породами. Общая мощность отложений 9-15 м.

Дорогомиловский горизонт представлен в нижней части разреза толщей известняков, в верхней - глиной и мергелями. Распространены Triticites acutus Dunb. Et Condra, Choristites cinctiformis Stuck. Мощность отложений 13-15 м.

Яузские слои сложены доломитизированными известняками и желтоватыми, часто пористыми и кавернозными доломитами с прослоями красных и голубоватых карбонатных глин. Мощность 15,5-16,5 м. Здесь появляется Triticites arcticus Schellw, широко распространены Chonetes jigulensis Stuck, Neospirifer tegulatus Trd., Buxtonia subpunctata Nic. Полная мощность достигает 40-60 м.

Гжельский ярус () обычно очень маломощен.

Отложения гжельского яруса в пределах рассматриваемого района представлены щелковскими слоями - светло-серыми и буровато-желтыми тонкозернистыми или органогенно-обломочными, иногда доломитизированными известняками и тонкозернистыми доломитами, в нижней части красные глины с прослоями известняков. Общая мощность 10-15м.

Среди мезозойских отложений в описываемом районе встречены образования юрской и нижней части меловой системы.

Юрская система.

Осадки юрской системы распространены повсеместно, за исключением мест высокого залегания каменноугольных отложений, а также в древних и частично современных четвертичных долинах, где они размыты.

Среди юрских отложений выделяются континентальные и морские осадки. К первым относятся нерасчлененные отложения батского и нижней части келловейского ярусов среднего отдела. Ко вторым - отложения келловейского яруса среднего отдела и оксфордского яруса верхнего отдела, а также отложения волжского регионяруса.

Юрские отложения залегают с угловым несогласием на отложениях каменноугольной системы.

Средний отдел.

Батский ярус и нижняя часть келловейского яруса объединенные ()

Континентальные отложения бат-келловейского возраста представлены толщей песчано-глинистых осадков, серыми мелкозернистыми, местами разнозернистыми песками с гравием и черными глинами, содержащими обугленные растительные остатки и углистые прослои. Мощность этих осадков колеблется от 10 до 35 м, увеличиваясь в пониженных частях доюрской долины размыва и уменьшаясь на ее склонах. Обычно они залегают довольно глубоко под морскими отложениями верхней юры. Выход континентальных юрских отложений на дневную поверхность наблюдается на р. Пахре. Возраст толщи определяется по остаткам флоры среднеюрского облика в подобных глинах. Определены: Phlebis whitbiensis Brongn., Coniopteris sp., Nilssonia sp., Equisetites sp.

Келловейский ярус ()

На рассматриваемой территории келловейский ярус представлен средним и верхним келловеем.

Средний келловей залегает трансгрессивно на эродированной поверхности верхнего и среднего карбона или на континентальных бат-келловейских отложениях. На рассматриваемой территории он сохранился в форме отдельных островков в пределах Главной московской ложбины. Обычно отложения представлены песчано-глинистой толщей буро-жёлтого и серого цвета с железистыми оолитами с конкрециями оолитового мергеля. Фауна, характерная для среднего келловея: Erymnoceras banksii Sow., Pseudoperisphinctes mosquensis Fisch. ., Ostrea hemideltoidea Lah., Exogyra alata Geras., Pleurotomaria thouetensis Heb. Et Desl., Rhynchonella acuticosta Ziet, Rh. alemancia Roll, и др.

Мощность среднего келловея колеблется в пределах от 2 до 11; в погребённой доюрской ложбине она достигает 14,5 м. Максимальная мощность равна 28,5 м.

Верхний келловей с размывом залегает на среднем келловее и представлен серыми глинами, нередко песчанистыми, с фосфоритовыми и мергшшстыми конкрециями, содержащими железистые оолиты. Для верхнего келловея характерна Quenstedticeras lamberti Sow. В связи с размывом их в оксфордское время верхнекелловейские отложения имеют незначительную мощность (1-3 м) или отсутствуют вовсе.

Верхний отдел.

Оксфордский ярус ()

Отложения оксфордского яруса залегают со стратиграфическим несогласием на породах келловейского яруса и представлены на исследуемой территории нижним и верхним Оксфордом.

Нижний Оксфорд сложен серыми, реже черными, иногда зеленоватыми оттенками глинами с редкими конкрециями оолитового мергеля. Глины жирные, пластичные, иногда сланцеватые, слабо песчанистые и слабо слюдистые. Фосфориты плотные, чёрные внутри. Фауна нижнего Оксфорда часто обильна: Cardioceras cordatom Sow., C. ilovaiskyi M. Sok., Astarta deprassoides Lah., Pleurotomaria munsteri Roem.

Мощность нижнего Оксфорда очень незначительна (от 0,7 до нескольких метров).

Верхний Оксфорд отличается от нижнего более тёмным, почти чёрным, цветом глин, большей песчанистостью, слюдистостью, увеличением примеси глауконита. На границе верхнего и нижнего Оксфорда наблюдаются следы размыва или обмеления. На контакте с нижним Оксфордом отмечено обилие гальки из нижележащих глин, наличие окатанных обломков ростров белемнитов, раковин двустворок.

Для верхнего Оксфорда характерны аммониты группы Amoeboceras alternans Buch. Здесь встречены: Desmosphinctes gladiolus Eichw., Astarta cordata Trd. и др. Мощность верхнего Оксфорда в среднем составляет от 8 до 11 м, максимальная достигает 22 м. Общая мощность оксфордского яруса колеблется в пределах от 10 до 20 м.

Кимериджский ярус ()

Отложения кимериджского яруса залегают со стратиграфическим несогласием на толще пород оксфордского яруса. Отложения представлены тёмно-серыми глинами с прослоями редких фосфоритов и галькой в основании толщи. Определены: Amoeboceras litchini Salt, Desmosphinctes pralairei Favre. и др. Мощность яруса около 10 м.

Волжский регионярус.

Нижний подъярус ()

Залегает с размывом на Оксфорде. Отложения нижнего волжского яруса выходят на дневную поверхность по берегам рек Москвы, Пахры, Мочи.

Зона Dorsoplanites panderi. В основании нижнего волжского яруса залегает тонкий слой глинистого-глауконитового песка с окатанными и истончёнными фосфоритовыми конкрециями. Фосфоритовый слой богат фауной: Dorsoplanites panderi Orb., D. dorsoplanus Visch., Pavlovia pavlovi Mich. Мощность нижней зоны в обнажениях не превышает 0,5 м.

Зона Virgatites virgatus сложена тремя пачками. Нижняя пачка представлена маломощными серо-зелёными глауконитовыми глинистыми песками, иногда сцементированными в песчаник, с редкими рассеянными фосфоритами глинисто-глауконитового типа и гальками фосфоритов. Здесь впервые встречены аммониты группы Virgatites yirgatus Buck Мощность пачки 0,3-0,4 м. Пачка перекрыта фосфоритовым слоем. Верхняя пачка сложена чёрными глауконитовыми глинистыми песками и песчанистыми глинами. Мощность пачки около 7 м. Общая мощность зоны 12,5 м.

Зона Epivirgatites nikitini представлена зеленовато-серыми или тёмно-зелёными мелкозернистыми глауконитовыми песками, иногда глинистыми, сцементированными в рыхлый песчаник; в песках рассеяны желваки песчанистого фосфорита. Из фауны встречаются Rhynchonella oxyoptycha Fisck, Epivirgatites bipliccisormis Nik., E. nikitini Mich. Мощность зоны 0,5-3,0 м. Общая мощность нижневолжского яруса колеблется 7-15 м.

Верхний подъярус ()

Верхневолжский подъярус вскрыт скважинами и выходит на дневную поверхность у реки Пахры.

В его составе выделяют три зоны.

Зона Kachpurites fulgens представлена тёмно-зелёными и буровато-зелёными мелкозернистыми, слабо глинистыми глауконитовыми песками с мелкими песчанистыми фосфоритами. Здесь встречены: Kachpurites fulgens Trd., К. subfulgens Nik., Craspedites fragilis Trd., Pachyteuthis russiensis Orb., Protocardia concirma Buch., остатки Inoceramus., губки. Мощность зоны менее 1 метра.

Зона Garniericicaras catenulatum представлена зеленовато-серыми, слабо-глинистыми, глауконитовыми песками с песчанистыми фосфоритами, редкими внизу и многочисленными в верхней части толщи. Песчаники содержат обильную фауну: Craspedites subditus Trd. Мощность зоны до 0,7 м.

Зона Craspedites nodiger представлена песками двух фапиальных типов. Нижняя часть толщи (0,4 м) сложена глауконитовым песком или песчаником со сростками фосфорита. Мощность этой толщи не превышает 3 м., но иногда достигает 18 м. Характерна фауна: Craspedites nodiger Eichw., С. kaschpuricus Trd., С. milkovensis Strem., С. mosquensis Geras. Зона достигает значительной мощности от 3-4 м до 18 м, а в карьерах Лыткарино до 34 м.

Общая мощность верхневолжского подъяруса 5-15 м.

Меловая система

Нижний отдел.

Валанжинский ярус ()

Отложения валанжинского яруса залегают со стратиграфическим несогласием на породах волжского регионяруса.

В основании валанжинского яруса залегает зона Riasanites rjazanensis - рязанский горизонт", - сохранившаяся небольшими островками в бассейне 30 р. Москвы. Она представлена маломощным (до 1 м) слоем песка с песчанистыми фосфоритовыми конкрециями, с Riasanites rjasanensis (Venez) Nik., R. subrjasanensis Nik. и др.

Барремский ярус ()

На отложениях нижнего валанжина трансгрессивно залегает песчано-глинистая толща баррема, сложенная переслаиванием жёлтых, бурых, тёмных песков, песчанистых глин и сильно слюдистых глинистых песчаников с конкрециями сидерита с Simbirskites decheni Roem. Нижняя часть барремского яруса, представленная светло-серыми песками мощностью 3-5 м, наблюдается во многих отложениях на реке Москве, Моче, Пахре. Вверху они постепенно переходят в пески апта. Полная мощность барремских отложений достигает 20-25 м; однако в связи с четвертичным размывом она не превышает 5-10 м.

Аптский ярус ()

Отложения представлены светлыми (до белых), мелкозернистыми слюдистыми песками, иногда сцементированными в песчаники, с прослоями тёмных слюдистых глин, местами с растительными остатками. Полная мощность аптских отложений достигает 25 м; минимальная мощность 3-5 м. Характерны Gleichenia delicata Bolch.

Альбский ярус ()

Отложения альбского яруса сохранились только на Теплостанской возвышенности. На отложениях апта залегают со стратиграфическим несогласием. Под грубыми валунами вскрыта толща песчано-глинистых отложений мощностью 31м, залегающая на серых песках апта.

Неогеновая система (N)

Отложения неогеновой системы залегают с угловым несогласием на меловых отложениях.

На рассматриваемой территории встречена песчаная толща аллювиального облика. Наиболее полные выходы песков этого типа находятся на р. Пахре. Представлены эти отложения белыми и серыми 31 тонкозернистыми кварцевыми песками, переслаивающимися с крупнозернистыми и гравийными песками, с галечником кремня в основании, местами с прослоями глин. Пески диагонально слоистые, содержат гальки и валуны местных пород - песчаника, кремня и известняка. Общая мощность неогена не превышает 8 м.

Четвертичная система (О)

Четвертичные отложения (Q) развиты повсеместно, перекрывая неровное ложе коренных пород. Поэтому современный рельеф местности в значительной степени повторяет погребенный рельеф, сформировавшийся к началу четвертичного периода. Четвертичные осадки представлены ледниковыми образованиями, которые представлены тремя моренами (сетуньской, донской и московской) и разделяющими их флювиогляциальными отложениями, а также аллювиальными осадками древнечетвертичных и современных речных террас.

Нижне-среднечетвертичные отложенияокско-днепровского межледниковья () вскрываются скважинами и выходят на дневную поверхность по притокам р. Пахры. Водовмещающие породы представлены песками с прослоями суглинков и глин. Их мощность от нескольких метров до 20 м.

Морена днепровского оледенения (). Имеет широкое распространение. Представлена суглинками с галькой и валунами. Мощность меняется от 20 до 25 м.

Аллювиально-флювиогляциальные отложения, залегающие между моренами московского и днепровского оледенения (). Распространены на обширных пространствах междуречья и по долинам р. Москвы и р. Пахры, а также на юго-западе, северо-западе и юго-востоке территории. Отложения представлены суглинками, супесями и песками, мощностью от 1 до 20 м., иногда до 50 м.

Морена московского оледенения и покровные суглинки (). Распространены повсеместно. Отложения представлены красно-бурым валунным суглинком или супесью. Мощность невелика 1-2 м.

Водно-ледниковые отложения времени отступания московского ледника () распространены в северо-западной части территории и представлены моренными суглинками. Мощность отложений достигает 2 м.

Валдайско-московские аллювиально-флювиогляциальные отложения () распространены на юго-востоке данной территории. Отложения представлены мелкозернистыми песками, мощностью около 5 м.

Средне-верхнечетвертичные аллювиально-флювиогляциальные отложения () распространены в пределах трех надпойменных террас в долинах рек Москвы, Пахры и их притоков. Отложения представлены песками, местами с прослоями суглинков и глин. Мощность отложений изменяется от 1,0 до 15,0 м.

Современные аллювиальные озёрно-болотные отложения () распространены, в основном, в северной части территории, на водоразделах. Отложения представлены сапропелью (гиттия), серыми оглеенными озёрными глинами или песками. Мощность изменяется от 1 до 7 м.

Современные аллювиальные отложения () развиты в пределах пойменных террас рек и ручьев, в днищах оврагов. Отложения представлены мелкозернистыми песками, иногда иловатыми, в верхней части с прослоями супесей, суглинков и глин. Общая мощность 6-15 м., на мелких реках и в днищах оврагов 5-8 м.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ И НАУКЕ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Географический факультет

Кафедра геологии и геоморфологии

геологическое строение ТЕРРИТОРИИ

Курсовая работа по дисциплине

"Структурная геология и геокартирование"

Составил: студент группы 2.5

Рахимов И. Р.

Руководитель: доцент

Ларионов Николай Николаевич

Уфа 2009 г.

Введение

1. Физико-географический очерк

2. Стратиграфия и литология

3. Тектоника

4. История геологического развития

5. Полезные ископаемые

6. Спец (Осадочные горные породы)

Заключение


ВВЕДЕНИЕ

Данная курсовая работа подводит итоги изучения курса структурной геологии и геокартирования.

Основной целью курсовой работы является закрепление материала по курсу Структурная Геология и Геокартирование и получение опыта анализирования геологической карты, которая представляет собой изображение на топографической основе с помощью условных знаков распространение и условие залегания горных пород на земной поверхности, разделённых по возрасту, составу и происхождению.

Задачами курсовой работы являются:

Подробное описание геологического строения района данной местности: составление физико-географической характеристики; изучение стратиграфии, тектоники и литологии местности

Составление геологического разреза

Составление орогидрографической схемы

Составление структурно-тектонической схемы

Восстановление истории геологического развития, опираясь на геологические материалы, разрез, стратиграфическую колонку

Описание полезных ископаемых, которые могут быть распространенны на предполагаемой территории.

Для решения вышеперечисленных задач анализируется учебная геологическая карта №1, выполненная в масштабе 1:50000. Рельеф изображен сплошными горизонталями, проведенными через 10 м. Составитель карты: Д.Н.Утехин, редакторы: Ю.А.Зайцев и М.М.Москвин. Год издания - 1984 .

Крупными стратиграфическими подразделениями данного района являются каменноугольная, юрская и меловая системы. Общий характер залегания толщ – горизонтальный.

1.ФИЗИКО-ГЕОГРАФИЧЕСКИЙ ОЧЕРК

1)Орография

Рельеф описываемой территории в большей мере представляет собой долину реки Мышега с её притоками. Река переживает стадию зрелости, о чём свидетельствует относительная выровненность данного участка суши, а также широкая распространённость аллювиальных отложений, формирующих речную пойму. В качестве водоразделов могут выступать небольшие холмы в междуречьях Пары и Ольховки, Ольховки и Северки, а также Ягодной и Снежети. Максимальные абсолютные высоты не превышают 201 м. Минимальной обозначается уровень поймы в низовьях р. Мышеги – 115 м. Максимальная относительная высота в 95 м. характеризует рельеф участка суши с приблизительной площадью 310 км 2 как равнинный. Высочайшей отметкой данного района является возвышенность к востоку от истока р. Северки – 200,5 м.

Холмы в основном имеют пологие склоны. Сложенные глинами, песками и песчаниками, они не могут иметь больших значений абсолютных отметок.

2) Гидрография

Река Мышега основная и является бассейном стока для ряда притоков. В географическом отношении русло р. Мышега простирается с запада на восток. Правые притоки: р. Ягодная и р. Снежеть. Левые притоки: р. Вожа и р. Ольховка и р. Северка. Также к левым притокам относятся три мелкие реки, не имеющие названия. Река Пара является притоком второго порядка по отношению к р. Мышеге.

Для данной территории густота речной сети довольно высока. Река Мышега имеет низкую и высокую поймы, а также по крайней мере одну надпойменную террасу. Судя по тому, что река протекает по равнинной территории, можно с точностью судить о том, что боковая эрозия преобладает над донной. Это даёт возможность росту больших количеств меандр и, учитывая это, реку можно охарактеризовать как извилистая.

3) Географо-экономическая характеристика района

В пределах карты мы имеет возможность наблюдать несколько небольших населённых пунктов – деревень. Перечисляя эти населённые пункты с севера на юг, установится такая последовательность: Коты, Дубки, Рожки, Шухово, Коптево, Калиновка, Ивановка, Поповка, Петровка, Узкое, Подлипки, Нелидово, Петушки, Колки, Ржаное, Злобино, Ждановка, Крюково, Ермолино, Кузьмино, Ольховка, Долгое, Крутое, Нерестовка, Кольцово, Желанное, Ягодное.

Если говорить о закономерности распределения этих деревень, то все они находятся у берегов вышеназванных рек. Наибольшая плотность населённых пунктов наблюдается по берегам Мышеги. Что касается распределения домов и прочих зданий в самих населённых пунктах, то формы их вытянуты, видимо по двум-трём параллельным улицам.

В меридиональном направлении протягиваются две просёлочные дороги. Западная дорога проходит рядом с д. Рожки, через д. Поповка, д. Кузьмино, д. Долгое и между д. Желанное и д. Ягодное. Через р. Мышега проходит деревянный мост, соединяющий Кузьмино и Долгое.

Восточная дорога проходит рядом с д. Ивановка, затем через р. Мышега по деревянному мосту и через д. Кольцово.

На северо-востоке карты проходит железная дорога и к югу от д. Коты располагается станция Коты.

2.СТРАТИГРАФИЯ И ЛИТОЛОГИЯ

В геологическом строении данной территории участвуют отложения четвертичной, меловой, юрской и каменноугольной систем. Характерным фактом для этих систем является то, что они сложены лишь осадочными породами. Общая мощность пород, слагающих территорию, составляет более 160 м.

КАМЕННОУГОЛЬНАЯ СИСТЕМА

Отложения этой системы являются самыми древними в строении описываемой нами территории. Каменноугольная система имеет выходы в северо-западной и северо-восточной частях карты. Кроме этого, отложения каменноугольного возраста обнажаются в бортах реки Мышега, а также во всех врезанных боковых долинах. Каменноугольная система представлена нижним отделом, в составе которой есть 2 яруса: визейский и серпуховский.

Система представлена известняками, глинами, известняками с прослойками доломита.

Визейский ярус

Породы, слагающие визейский ярус представлены темно-серыми, серыми, массивными и слоистыми, органогенно-обломочными известняками, известняками с прослоями зеленовато-серых известковистых глин. Так как на данной территории они являются самыми древними, взаимоотношение с нижележащими породами не установлены. Общая мощность яруса превышает 80 м. Ярус подразделяется на 5 горизонтов: Алексинский, Михайловский, Веневский, Тарусский и Стешевский.

Алексинский горизонт (C1al) Визейского яруса представлен известняками серыми и тёмно-серыми, массивными и слоистыми, органогенно-обломочными. Общая мощность отложений Алексинского горизонта составляет более 15 м.

Михайловский горизонт (C1mh) Визейского яруса представлен известняками серыми микрозернистыми, органогенно-обломочными с прослоями зеленовато-серых известковистых глин. Мощность Михайловского горизонта составляет 20 м.

Веневский горизонт (C1vn) Визейского яруса представлен известняками светло-серыми с фиолетовыми и бурыми пятнами, массивными. Мощность этого горизонта около 15 м.

Тарусский горизонт (C1tr) Визейского яруса представлен известняками светло-серыми слоистыми, микрозернистыми, органогенно-обломочными. Мощность данного горизонта составляет 10 м.

Стешевский горизонт (C1st) Визейского яруса представлен глинами серыми сланцеватыми с прослойками доломита. Внизу – глины жирные серые, вишнёво-красные и зелёные. Мощность этого яруса составляет 20 м.

Намюрский ярус

Намюрский ярус представлен лишь одним горизонтом – Протвинским.

Протвинский горизонт (С1pr) Намюрского яруса представлен известняками белыми массивными, перекристаллизованными, кавернозными. Мощность горизонта составляет 15 м.

ЮРСКАЯ СИСТЕМА

На отложениях нижнекаменноугольной системы несогласно залегают породы верхнеюрской системы. Юрская система представлена верхним отделом, в составе которой есть три яруса: келловейский, оксфордский, кимериджский. Выходы пород этой системы расположены по всей территории карты. Породы этой системы представлены серыми, алевристыми и песчанистыми глинами. Общая мощность составляет 30 м.

Келловейский ярус (J3cl). Отложения келловейского яруса несогласно залегают на Протвинском горизонте серпуховского яруса нижнего отдела каменноугольной системы. Глины серые алевритистые и песчанистые, известковистые слагают Келловейский ярус, мощность которого составляет 15 м.

Оксфордский ярус (J3ox). Этот ярус сложен глинами серыми, алевритистыми и песчанистыми, местами известковистыми. Мощность яруса составляет 10 м.

Кимериджский ярус (J3km). Этот ярус сложен серыми глинами, мощность которых составляет около 5 м.

МЕЛОВАЯ СИСТЕМА

Нижнемеловые отложения несогласно залегают на отложениях верхнеюрской системы, т. к. из хронологической последовательности выпадают Титонский ярус Верхней Юры и Берриасский ярус Нижнего Мела. Меловые отложения имеют выходы на вершинах холмов или на их склонах. Представлены только два яруса – Валанжинский и Аптский. Описываемая система сложена зелёными, глауконитовыми песками, кварцевыми и белыми песчаниками и серыми глинами. Общая мощность составляет 35 м.

Аптский ярус (K1ap). Отложения Аптского яруса несогласно залегают на отложениях Валанжинского яруса с азимутальным несогласием, потому что из разреза выпадают отложения готеривского, барремского а аптского веков поздней эпохи мелового периода.Этот ярус несогласно залегает на предыдущем. Он сложен песками и песчаниками белыми, кварцевыми, мощность которых составляет 20 м.

3.ТЕКТОНИКА

Тектоническая обстановка данного района спокойная. Отсутствуют разрывные нарушения, разломы. Отсутствие складчатости и горизонтальное залегание осадочных пород говорят о том, что эта территория относится к платформенному чехлу.

Лишь восстанавливая историю развития района, по наличию стратиграфических несогласий можно сказать о поднятии территории в определённые промежутки времени. А именно – отсутствие в разрезе пород средней и верхней каменноугольной системы и пород пермской и триасовой систем. Также юрская система представлена лишь верхним отделом, а меловая лишь нижним. Все эти условия характеризуют положительные тектонические движения.

В четвертичное время произошло понижение базиса эрозии главной реки описываемого района.

В данном районе можно выделить 3 основных структурных этажа, которые обозначаются по поверхностям стратиграфических несогласий: Нижнекаменноугольный, Верхнеюрский и Нижнемеловой.

Нижнекаменноугольный этаж

Отложения этого структурного этажа на анализируемой территории представлены только двумя ярусами нижнего отдела каменноугольной системы. Породы данного структурного этажа выходят на поверхность в основном в северо-западной и северо-восточной частях карты, кроме того, отложения каменноугольного возраста обнажаются в бортах реки Мышега, также во всех врезанных боковых долинах рек. Этаж представлен осадочными отложениями - известняками и глинами.

Верхнеюрский этаж

Отложения данного структурного этажа на анализируемой территории представлены только верхним отделом. Обнажения разбросаны по всей территории карты. Представлен этаж глинами.

Нижнемеловой этаж

Данный структурный этаж получил распространение на юго-западной, юго-восточной и центральной частях описываемой карты. Нижнемеловой этаж имеет выходы на вершинах холмов или на их склонах. Этаж представлен песками, песчаниками и глинами.

4.ИСТОРИЯ ГЕОЛОГИЧЕСКОГО РАЗВИТИЯ

Историю геологического развития этого района можно начать описывать с каменноугольного периода. Помимо этого периода выделяется ещё два периода осадконакопления: юрский и меловой. Самыми древними породами, распространёнными на территории данной карты, являются отложения Визейского века Каменноугольного периода. Карбонатные породы свидетельствуют о том, что данная территория находилась в морских условиях. В Намюрском веке морские условия осадконакопления сохранялись.

В дальнейшем отложения Раннеюрского периода со стратиграфическим несогласием накапливались на породах каменноугольного возраста. Это может быть объяснимо тем, что в Пермском периоде произошла трансгрессия моря, о чём свидетельствуют песчаники в отложениях Келловейского яруса. В течение Юрского периода продолжалась трансгрессия моря, т. к. отложения Кимериджского яруса являются более тонкими, нежели отложения Келловейского яруса.

После юрского периода произошёл перерыв в осадконакоплении, о чём свидетельствует стратиграфическое несогласие между юрской и меловой системами. Этот период представлен песками и глинами, что говорит о дальнейшей трансгрессии моря. Происходило поднятие района. Так же после Валанжийского века Мелового периода произошёл перерыв в осадконакоплении, о чём свидетельствует стратиграфическое несогласие между Валанжийским и Аптским ярусами. Осадки Аптского яруса представлены белыми кварцевыми песками, по которым можно предположить, что осадконакопление происходило в прибрежной зоне.

В целом обстановка осадконакопления была стабильная, тектонический режим спокойный.

5.ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ

Осадочные породы данной территории теоретически могут являться полезными ископаемыми. К полезным ископаемым можно отнести известняки каменноугольного периода, которые можно применять для известкования кислых почв в сельском хозяйстве, также можно применять в производстве строительных материалов. Этот природный материал также используется для получения извести, цемента; в металлургии - в качестве флюсов. Кроме того, известняк применяется в декоративном оформлении наружного и внутреннего интерьера стен помещений.

Также к полезным ископаемым можно отнести пластичные серые глины Кимериджского яруса верхней юры, которые можно применять в скульптуре. Песчанистые глины Келловейского яруса могут широко применяться в производстве кирпича.

Белый песок Аптского яруса меловой системы может найти своё применение в декоративных штукатурках, кровельных материалах. Пески кварцевые пригодны для строительных целей, автомобильных дорог, также эту породу можно применять для производства стекла.

Гальки фосфоритов применяются в химическом сырье.

Зёрна глауконита Валанжинского яруса меловой системы могут применяться для очистки почвы и твёрдых покрытий (асфальта, бетона) от нефтепродуктов, т.к. глауконит обладает сорбционными свойствами.

6.ОСАДОЧНЫЕ ГОРНЫЕ ПОРОДЫ

Осадочные горные породы образуются в результате переотложения продуктов выветривания и разрушения различных горных пород, химического и механического выпадения осадка из воды, жизнедеятельности организмов или всех трех процессов одновременно.

Классификация осадочных горных пород

В формировании осадочных горных пород участвуют различные геологические факторы: разрушение и переотложение продуктов разрушения ранее существовавших пород, механическое и химическое выпадение осадка из воды, жизнедеятельность организмов. Случается, что в образовании той или иной породы принимает участие сразу несколько факторов. При этом некоторые породы могут формироваться различным путем. Так, известняки, могут быть химического, биогенного или обломочного происхождения. Это обстоятельство вызывает существенные трудности при систематизации осадочных пород. Единой схемы их классификации пока не существует.

Различные классификации осадочных пород были предложены Ж.Лаппараном (1923 г.), В. П. Батуриным (1932 г.), М. С. Швецовым (1934 г.) Л. В. Пустоваловым (1940 г.), В. И. Лучицким (1948 г.), Г. И. Теодоровичем (1948 г.), В. М. Страховым (1960 г.), и другими исследователями.

Однако для простоты изучения применяется сравнительно простая классификация, в основе которой лежит генезис (механизм и условия образования) осадочных пород. Согласно ей осадочные породы подразделяются на обломочные, хемогенные, органогенные и смешанные.

Генезис осадочных горных пород

"Осадочные горные породы" объединяют три принципиально различные группы поверхностных (экзогенных) образований, между которыми практически отсутствую существенные общие свойства. Собственно из осадков образуются хемогенные (соли) и механогенные (обломочные, частично терригенные) осадочные породы. Образование осадков происходит на поверхности земли, в её приповерхностной части и в водных бассейнах. Но применительно к органогенным породам довольно часто термин "осадок" не применим. Так если осаждение скелетов планктонных организмов ещё можно отнести к осадкам, то куда отнести скелеты донных, а там более колониальных, например, кораллов, организмов не ясно. Это говорит о том, что сам термин "Осадочные горные породы" является искусственным, надуманным, он является архаизмом. В следствие этого В. Т. Фролов пытается заменить его термином "экзолит". Поэтому анализ условий образования этих пород должен происходить раздельно.

В классе механогенных пород первые два понятия являются равнозначными и характеризуют разные свойства этого класса: механогенный - отражает механизм образования и переноса, обломочный - состав (состоит практически из обломков (понятие строго не определено)). Понятие "терригенный" отражает источник материала, хотя механогенными являются и значительные массы обломочного материала, образуемого в подводных условиях.

Механогенные осадочные породы

Эта группа пород включает две главные подгруппы - глины и обломочные породы. Глины - специфические породы, сложенные различными глинистыми минералами: каолинитом, гидрослюдами, монтмориллонитом и др. Глины, выделившиеся из взвеси называются водноосадочными глинами в отличие от остаточных глин, присутствующих в сохранившихся корах выветривания.

Общие свойства обломочных пород

Обломочные породы - главнейшая часть механогенных пород. Среди осадочных пород "обломочные породы" представляют собой одни из самых распространенных классов горных пород. Объем этого понятия соответствует представлениям ранних периодов становления литологии. Изначально к ним относили породы, содержащие собственно обломки пород и минералов, с одной стороны, и продукты их механического (физического) преобразования - окатанные зерна пород и минералов - с другой. Но определение "обломка" отсутствует. Такая же ситуация и с антагонистом "брекчии" - галькой: что такое галька? Есть узкое определение понятия "галька", по которому галька ограничена в линейных размерах. Однако в литологии есть также объекты, близкие по смыслу гальке, но иных размеров: валуны, гравий и т. д. В широком смысле "галька" (или окатыш по Л. В. Пустовалову) - "это окатанные водой обломки горных пород". Имеется существенное генетическое различие между обломками и окатышами. "Обломочные породы" - породы, сложенные только обломками материнских пород (минералов). Окатыши не являются обломками в прямом смысле и потому не могут входить в группу "обломочных пород". Они составляют самостоятельную, весьма распространенную группу осадочных образований (конгломероиды), сложенную полностью или преимущественно окатышами различных размеров (галька. гравий, конгломераты, галечники, гравелиты и пр.)

Основными структурами осадочных пород являются:

обломочная - порода состоит из обломков частиц размером более 0,01 мм, прежде существовавших пород;

тонкообломочная (глинистая или пелитовая) - порода состоит из частиц размером менее 0,01 мм (глина, мергель);

кристаллическая разнозернистая - в породе визуально видны кристаллы минералов (каменная соль, гипс);

скрытокристаллическая (афонитовая) - минералы в породе просматриваются только под микроскопом (мел);

детритовая - порода сложена обломками раковин или обрывками растений.

В осадочных породах выделяют текстуры первичные - возникающие в период седиментации (например, слоистые) ли в ещё не отвердевшем, пластичном осадке (например, подводнооползневые) и вторичные - образующиеся в стадию превращения осадка в горную породу, а также при её дальнейших изменениях (диагенез, катагенез, начальные стадии метаморфизма).

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсовой работы были достигнуты поставленные цели и задачи:

1)Мы научились анализировать геологические карты

2) Подробно описали геологическое строение данного района, составили физико-географический очерк. Рельеф данной территории в целом равнинный, имеются несколько холмов. Главной рекой описываемого района является река Мышега.

3) Выяснили стратиграфию, тектонику и литологию местности. В данном районе выделяются три системы: каменноугольная, юрская и меловая, которые представлены осадочными породами: известняками, глинами, песками, кварцевыми песчаниками. Общая мощность более 160 м.

4) Данную территорию можно отнести к платформенному чехлу, отсутствуют складки, разломы, разрывные нарушения.

5) Выделяются три основных структурных этажа: нижнекаменноугольный, верхнеюрский, нижнемеловой.

6) Опираясь на полученную информацию о стратиграфии, тектоники занимаемой территории, мы восстановили историю геологического развития. Обстановка осадконакопления спокойная.

Был составлен геологический профиль карты по выделенной линии.

Загрузка...
Top