Момент количества движения теорема моментов. Момент количества движения. Теорема об изменении главного момента количества движения системы

Для вычисления М. к. д. k материальной точки относительно центра О или оси z справедливы все формулы, приведённые для вычисления момента силы, если в них заменить вектор F вектором количества движения mv . Т. о.,k o = [r · ], где r - радиус-вектор движущейся точки, проведённый из центра О , a k z равняется проекции вектора k o на ось z , проходящую через точку О . Изменение М. к. д. точки происходит под действием момента m o (F ) приложенной силы и определяется теоремой об изменении М. к. д., выражаемой уравнением dk o /dt = m o (F ). Когда m о (F ) = 0, что, например, имеет место для центральных сил, движение точки подчиняется Площадей закону.

Главный М. к. д . (или кинетический момент) механической системы относительно центра О или оси z равен соответственно геометрической или алгебраической сумме М. к. д. всех точек системы относительно того же центра или оси, т. е. K o = Σk oi , K z = Σk zi . Вектор K o может быть определён его проекциями K x , K y , K z на координатные оси. Для тела, вращающегося вокруг неподвижной оси z с угловой скоростью ω, K x = - I xz ω, K y = -I yz ω, K z = I z ω, где l z - осевой, а I xz , l yz - центробежные моменты инерции.

Если ось z является главной осью инерции для начала координат О, то K o = I z ω.

Изменение главного М. к. д. системы происходит под действием только внешних сил и зависит от их главного момента M o e . Эта зависимость определяется теоремой об изменении главного М. к. д. системы, выражаемой уравнением dK o /dt = M o e . Аналогичным уравнением связаны моменты K z и M z e . Если M o e = 0 или M z e = 0, то соответственно K o или K z будут величинами постоянными, т. е. имеет место закон сохранения М. к. д.

Билет 20

Общее уравнение динамики.

Общее уравнение динамики – при движении системы с идеальными связями в каждый данный момент времен сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю. Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы. Дает общий метод решения задач динамики. Последовательность составления: а) к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силы и моменты пар сил инерции; б) сообщают системе возможные перемещения; в) составляют уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Потенциальная сила. Работа потенциальной силы на конечном перемещении.

Потенциальная сила - сила, работа которой зависит только от начального и конечного положения точки её приложения и не зависит ни от вида траектории, ни от закона движения этой точки

Работа потенциальной силы равна разности значений силовой функции в конечной и начальной точках пути и от вида траектории движущейся точки не зависит.

Основным свойством потенциального силового поля и является то, что работа сил поля при движении в нем материальной точки зависит только от начального и конечного положений этой точки и ни от вида ее траектории, ни от закона движения не зависит.

Билет 21

Принцип виртуальных (возможных) перемещений.

Существуют две различные формулировки принципа возможных перемещений. В одной формулировке утверждается, что для равновесия материальной системы необходимо, чтобы равнялась нулю сумма элементарных работ всех внешних сил, приложенных к системе, на любом возможном перемещении.
В другой формулировке, наоборот, говорится, что система должна находиться в равновесии, чтобы сумма элементарных работ всех сил равнялась нулю. Такое определение этого принципа дается, например, в работе: “Виртуальная работа заданных сил, приложенных к системе с идеальными связями и находящейся в равновесии, равна нулю”.
Математически принцип возможных перемещений представляется в виде:
, (1)
где - скалярное произведение вектора силы и вектора виртуального перемещения.

Мощность пары сил

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело.

Мощность пары сил:

,

где омега Z – проекция угловой скорости на ось вращения.

Билет 22

1.Прнцип виртуальных перемещений
Рассмотрим виртуальное перемещение точки системы с номером i. Виртуальным перемещением δr i называется мысленное бесконечно малое перемещение точки, допускаемое связями без их разрушения в данное фиксированное мгновение времени.

Если связь одна и описывается уравнением (2), физически ясно, что связь не нарушится, когда вектор виртуального перемещения

где grad f - градиент функции (2) при фиксированном t , перпендикулярный поверхности связи в месте нахождения точки, равный

В вариационном исчислении бесконечно малые величины δr i , δx i , δy i , δz i называются вариациями функций r i , x i , y i , z i . Изменения координат точек или уравнений связи при неизменном времени находятся синхронным варьированием, которое осуществляется согласно левым частям формул (4) и (6).

То есть проекции δx i , δy i , δz i виртуального перемещения точки δr обращают в нуль первую вариацию уравнения связи при условии, что время не варьируется (синхронное варьирование):

(7)

Следовательно, виртуальное перемещение точки не характеризует ее движение, а определяет связь или, в общем случае, связи, наложенные на точку системы. Таким образом, виртуальные перемещения позволяют учесть эффект механических связей, не вводя реакции связей, как мы это делали раньше, и получать уравнения равновесия или движения системы в аналитическом виде, не содержащие неизвестных реакций связей.

2.Элементарная работа
Элементарная работа сил , действующих на абсолютно твердое тело, равна алгебраической сумме двух слагаемых: работы главного вектора этих сил на элементарном поступательном перемещении тела вместе с произвольно выбранным полюсом и работы главного момента сил, взятого относительно полюса, на элементарном вращательном перемещении тела вокруг полюса. [1 ]

Элементарная работа силы равна скалярному произведению силы на дифференциал радиуса-вектора точки приложения силы. [2 ]

Элементарная работа сил при этом зависит от выбора возможного перемещения системы. [3 ]

Элементарная работа силы при вращении тела, на которое сила действуе

Билет 23

1. Принцип виртуальных перемещений в обобщенных координатах.

Запишем принцип, выражая виртуальную работу активных сил системы в обобщенных координатах:

Так как на систему наложены голономные связи, вариации обобщенных координат не зависят между собой и не могут быть одновременно равны нулю. Поэтому последнее равенство выполнится только тогда, когда коэффициенты при δ j (j = 1 ÷ s) одновременно обращаются в нуль, то есть

2.Работа силы на конечном перемещении
Работа
силы на конечном перемещении определяется как интегральная сумма элементарных Работа и при перемещении M 0 M 1 выражается криволинейным интегралом:

Билет 24

1.уравнение Лагранжа второго рода.

Для вывода уравнений запишем принцип Даламбера-Лагранжа в обобщенных координатах в виде -Q j u = Q j (j = 1 ÷ s) .

Принимая во внимание, что Ф i = -m i a i = -m i dV i / dt , получаем:

(1)

(2)

Подставляя (2) в (1) получаем дифференциальное уравнение движения системы в обобщенных координатах, которое названо уравнением Лагранжа второго рода:

(3)

то есть, материальная система с голономными связями описывается уравнениями Лагранжа второго рода по всем s обобщенным координатам.

Отметим важные особенности полученных уравнений.

1. Уравнения (3) - это система обыкновенных дифференциальных уравнений второго порядка относительно s неизвестных функций q j (t), полностью определяющих движение системы.

2. Число уравнений равно числу степеней свободы, то есть движение любой голономной системы описывается наименьшим числом уравнений.

3. В уравнения (3) не нужно включать реакции идеальных связей, что позволяет, находя закон движения несвободной системы, выбором обобщенных координат исключить задачу определения неизвестных реакций связей.

4. Уравнения Лагранжа второго рода позволяют указать единую последовательность действий для решения многих задач динамики, которую часто называют формализмом Лагранжа.

2. Условие относительного покоя материальной точки получают из динамического уравнения Кориолиса, подставив в это уравнение значения относительного ускорения и кориолисовой силы инерции равные нулю:

Кинетический момент точки и механической системы

Рис. 3.14

Одной из динамических характеристик движения материальной точки и механической системы является кинетический момент или момент количества движения.

Для материальной точки кинетическим моментом относительно какого–либо центра О называют момент количества движения точки относительно этого центра (рис. 3.14),

Кинетическим моментом материальной точки относительно оси называется проекция на эту ось кинетического момента точки относительно любого центра на этой оси:

Кинетическим моментом механической системы относительно центра О называется геометрическая сумма кинетических моментов всех точек системы относительно того же центра (рис. 3.15):


(3.20)

Кинетический момент приложен к точке О , относительно которой он вычисляется.

Если спроецировать (3.20) на оси декартовой системы координат, то получим проекции кинетического момента на эти оси, или кинетические моменты относительно осей координат:

Определим кинетический момент тела относительно его неподвижной оси вращения z (рис. 3.16).

Согласно формулам (3.21), имеем

Но при вращении тела с угловой скоростью w скорость причем количество движения точки перпендикулярно отрезку d k и лежит в плоскости перпендикулярной оси вращения Oz , следовательно,

Рис. 3.15 Рис. 3.16

Для всего тела:

где J z – момент инерции относительно оси вращения.

Следовательно, кинетический момент твердого тела относительно оси вращения равен произведению момента инерции тела относительно данной оси на угловую скорость тела.

2. Теорема об изменении кинетического момента
механической системы

Кинетический момент системы относительно неподвижного центра O (рис. 3.15)

Возьмем от левой и правой части этого равенства производную по времени:


(3.22)

Учтем, что тогда выражение (3.22) примет вид

Или, с учетом того, что

– сумма моментов внешних сил относительно центра O , окончательно имеем:

(3.23)

Равенство (3.23) выражает теорему об изменении кинетического момента.



Теорема об изменении кинетического момента. Производная по времени от кинетического момента механической системы относительно неподвижного центра равна главному моменту внешних сил системы относительно того же центра.

Спроектировав равенство (3.23) на неподвижные оси декартовых координат, получим запись теоремы в проекциях на эти оси:

Из (3.23) следует, что если главный момент внешних сил относительно какого-либо неподвижного центра равен нулю, то кинетический момент относительно этого центра остается постоянным, т.е. если


(3.24)

Если же сумма моментов внешних сил системы относительно какой–либо неподвижной оси равна нулю, то соответствующая проекция кинетического момента остается постоянной,


(3.25)

Утверждения (3.24) и (3.25) представляют собой закон сохранения кинетического момента системы.

Получим теорему об изменении кинетического момента системы, выбрав в качестве точки при вычислении кинетического момента точку A , движущуюся относительно инерциальной системы отсчета со скоростью

Кинетический момент системы относительно точки A (рис. 3.17)

Рис. 3.17

так как то

Учитывая, что где – скорость центра масс системы, получаем

Вычислим производную по времени от кинетического момента

В полученном выражении:

Объединяя второе и третье слагаемое, и учитывая, что

окончательно получаем

Если точка совпадает с центром масс системы C , то и теорема принимает вид

т.е. она имеет ту же форму, что и для неподвижной точки О .

3. Дифференциальное уравнение вращения твердого тела
вокруг неподвижной оси

Пусть твердое тело вращается вокруг неподвижной оси Az (рис. 3.18) под действием системы внешних сил
Запишем уравнение теоремы об изменении кинетического момента системы в проекции на ось вращения:

Рис. 3.18

Для случая вращения твердого тела вокруг неподвижной оси:

где J z – постоянный момент инерции относительно оси вращения; w – угловая скорость.

Учитывая это, получаем:

Если ввести угол поворота тела j, то, учитывая равенство имеем

(3.26)

Выражение (3.26) есть дифференциальное уравнение вращения твердого тела вокруг неподвижной оси.

4. Теорема об изменении кинетического момента системы
в относительном движении по отношению к центру масс

Для исследования механической системы выберем неподвижную систему координат Ox 1 y 1 z 1 и подвижную Cxyz с началом в центре масс C , движущуюся поступательно (рис. 3.19).

Из векторного треугольника:

Рис. 3.19

Дифференцируя это равенство по времени, получаем

или

где – абсолютная скорость точки M k , - абсолютная скорость центра масс С ,
- относительная скорость точки M k , т.к.

Кинетический момент относительно точки О

Подставляя значения и , получим

В этом выражении: ­– масса системы; ;

– кинетический момент системы относительно центра масс для относительного движения в системе координат Сxyz .

Кинетический момент принимает вид

Теорема об изменении кинетического момента относительно точки О имеет вид

Подставим значения и получим

Преобразуем это выражение с учетом, что

или

Эта формула выражает теорему об изменении кинетического момента системы относительно центра масс для относительного движения системы по отношению к системе координат, движущейся поступательно с центром масс. Она формулируется так же, как если бы центр масс был неподвижной точкой.

Момент количества движения материальной точки относительно некоторого центра О равен векторному произведению радиуса-вектора движущейся точки на количество движения , т. е.

Очевидно, что модуль момента количества движения равен

где - плечо вектора v относительно центра О (рис. 167).

Проектируя векторное равенство (153) на координатные оси, проходящие через центр О, получаем формулы для моментов количества движения материальной точки относительно этих осей:

В векторной форме теорема о моменте количества движения выражается так: производная по времени от момента количества движения материальной точки относительно какого-либо неподвижного центра О равна моменту действующей силы относительно того же центра, т. е.

Проектируя векторное равенство (156) на какую-либо из координатных осей, проходящих через центр О, получаем уравнение, выражающее ту же теорему в скалярной форме:

т. е. производная по времени от момента количества движения материальной точки относительно какой-либо неподвижной оси равна моменту действующей силы относительно той же оси.

Эта теорема имеет большое значение при решении задач в случае движения точки под действием центральной силы Центральной силой называется такая сила, линия действия которой все время проходит через одну и ту же точку, называемую центром этой силы. Если материальная точка движется под действием центральной силы F с центром в точке О, то

и, следовательно, . Таким образом, момент количества движения в данном случае остается постоянным по модулю и по направлению. Отсюда следует, что материальная точка под действием центральной силы описывает плоскую кривую, расположенную в плоскости, проходящей через центр силы.

Если известна траектория, которую описывает точка под действием центральной силы, то, пользуясь теоремой о моменте количества движения, можно найти эту силу как функцию расстояния от точки до центра силы.

Действительно, так как момент количества движения относительно центра силы остается постоянным, то, обозначая h плечо вектора относительно центра силы, имеем:

(158)

Для определения этой постоянной должна быть известна скорость точки в каком-либо месте траектории. С другой стороны, имеем (рис. 168):

где - радиус кривизны траектории, - угол между радиусом-вектором точки и касательной к траектории в этой точке.

Итак, имеем два уравнения (158) и (159) с двумя неизвестными v и F; остальные величины, входящие в эти уравнения, т. е. , являясь элементами заданной траектории, легко могут быть найдены. Таким образом, можно найти v и F как функции .

Пример 129. Точка М описывает эллипс под действием центральной силы F (рис. 169). Скорость в вершине А равна . Найти скорость в вершине В, если и .

Решение. Так как в данном случае

Пример 130. Точка М массы описывает окружность радиуса а, притягиваясь точкой А этой окружности (рис. 170).

В начальный момент точка находится в положении В и имеет скорость . Определить скорость v точки и силу притяжения F как функции радиуса-вектора .

Рассмотрим материальную точку M массой m , движущуюся под действием силы F (рисунок 3.1). Запишем и построим вектор момента количества движения (кинетического момента) M 0 материальной точки относительно центра O :

Рисунок 3.1

Дифференцируем выражение момента количества движения (кинетического момента k 0 ) по времени:

Так как dr/dt=V , то векторное произведение V × m∙V (коллинеарных векторов V и m∙V ) равно нулю. В то же время d(m∙V)/dt=F согласно теореме о количестве движения материальной точки . Поэтому получаем, что

dk 0 /dt = r×F , (3.3)

где r×F = M 0 (F) – вектор-момент силы F относительно неподвижного центра O . Вектор k 0 ⊥ плоскости (r, m×V ), а вектор M 0 (F) ⊥ плоскости (r, F ), окончательно имеем

dk 0 /dt = M 0 (F) . (3.4)

Уравнение (3.4) выражает теорему об изменении момента количества движения (кинетического момента) материальной точки относительно центра: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

Проецируя равенство (3.4) на оси декартовых координат, получаем

dk x /dt = M x (F) ;

dk y /dt = M y (F) ;

dk z /dt = M z (F) . (3.5)

Равенства (3.5) выражают теорему об изменении момента количества движения (кинетического момента) материальной точки относительно оси: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

Рассмотрим следствия, вытекающие из теорем (3.4) и (3.5).

Следствие 1

Рассмотрим случай, когда сила F во все время движения точки проходит через неподвижный центр O (случай центральной силы), т.е. когда M 0 (F) = 0 . Тогда из теоремы (3.4) следует, что k 0 = const , т.е. в случае центральной силы момент количества движения (кинетический момент) материальной точки относительно центра этой силы остается постоянным по модулю и направлению (рисунок 3.2).

Рисунок 3.2

Из условия k 0 = const следует, что траектория движущейся точки представляет собой плоскую кривую, плоскость которой проходит через центр этой силы.

Следствие 2

Пусть M z (F) = 0 , т.е. сила пересекает ось z или параллельна ей.

В этом случае, как это видно из третьего из уравнений (3.5), k z = const , т.е. если момент действующей на точку силы относительно какой-либо неподвижной оси всегда равен нулю, то момент количества движения (кинетический момент) точки относительно этой оси остается постоянным .

В некоторых задачах в качестве динамической характеристики движущейся точки вместо самого количества движения рассматривают его момент относительно какого-либо центра или оси. Эти моменты определяются также как и моменты силы.

Моментом количеством движения материальной точки относительно некоторого центра О называется вектор, определяемый равенством

Момент количества движения точки называют также кинетическим моментом .

Момент количества движения относительно какой-либо оси , проходящий через центр О, равен проекции вектора количества движения на эту ось .

Если количество движения задано своими проекциями на оси координат и даны координаты точки в пространстве, то момент количества движения относительно начала координат вычисляется следующим образом:

Проекции момента количества движения на оси координат равны:

Единицей измерения количества движения в СИ является – .

Конец работы -

Эта тема принадлежит разделу:

Динамика

Лекция.. краткое содержание введение в динамику аксиомы классической механики.. введение..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы единиц
СГС Си Техническая [L] см м м [M]

Дифференциальные уравнения движения точки
Основное уравнение динамики можно записать так

Основные задачи динамики
Первая или прямая задача: Известна масса точки и закон ее движения, необходимо найти действующую на точку силу. m

Наиболее важные случаи
1. Сила постоянна.

Количество движения точки
Количеством движения материальной точки называется вектор, равный произведению м

Элементарный и полный импульс силы
Действие силы на материальную точку в течении времени

Теорема об изменении количества движения точки
Теорема. Производная по времени от количества движения точки равна действующей на точку силе. Запишем основной закон динамики

Теорема об изменении момента количества движения точки
Теорема. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь центра, равна моменту действующей на точку силы относительно того же

Работа силы. Мощность
Одна из основных характеристик силы, оценивающих действие силы на тело при некотором его перемещении.

Теорема об изменении кинетической энергии точки
Теорема. Дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Принцип Даламбера для материальной точки
Уравнение движения материальной точки относительно инерциальной системы отсчета под действием приложенных активных сил и сил реакции связей имеет вид:

Динамика несвободной материальной точки
Несвободной материальной точкой называется точка, свобода движения которой ограничена. Тела, ограничивающие свободу движения точки, называются связями

Относительное движение материальной точки
Во многих задачах динамики движение материальной точки рассматривается относительно системы отсчета, движущейся относительно инерциальной системы отсчета.

Частные случаи относительного движения
1. Относительное движение по инерции Если материальная точка движется относительно подвижной системы отсчета прямолинейно и равномерно, то такое движение называется относительны

Геометрия масс
Рассмотрим механическую систему, которая состоит из конечного числа материальных точек с массами

Моменты инерции
Для характеристики распределения масс в телах при рассмотрении вращательных движений требуется ввести понятия моментов инерции. Момент инерции относительно точки

Моменты инерции простейших тел
1. Однородный стержень 2. Прямоугольная пластина 3. Однородный круглый диск

Количество движения системы
Количеством движения системы материальных точек называется векторная сумма колич

Теорема об изменении количества движения системы
Эта теорема существует в трех различных формах. Теорема. Производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих н

Законы сохранения количества движения
1. Если главный вектор всех внешних сил системы равен нулю (), то количество движения системы постоянно

Теорема о движении центра масс
Теорема Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к рассмат

Момент количества движения системы
Моментом количества движения системы материальных точек относительно некоторого

Момент количества движения твердого тела относительно оси вращения при вращательном движении твердого тела
Вычислим момент количества движения твердого тела относительно оси вращения.

Теорема об изменении момента количества движения системы
Теорема. Производная по времени от момента количества движения системы, взятого относительно какого-нибудь центра, равна векторной сумме моментов внешних сил, действующих на

Законы сохранения момента количества движения
1. Если главный момент внешних сил системы относительно точки равен нулю (

Кинетическая энергия системы
Кинетической энергией системы называют сумму кинетических энергий всех точек системы.

Кинетическая энергия твердого тела
1. Поступательное движение тела. Кинетическая энергия твердого тела при поступательном движении вычисляется так же, как и для одной точки, у которой масса равна массе этого тела.

Теорема об изменении кинетической энергии системы
Эта теорема существует в двух формах. Теорема. Дифференциал кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систе

Загрузка...
Top