Центр масс полукольца. Решение задач по сопромату. Геометрические характеристики фигур. Способы определения координат центров тяжести тел

Результат расчетов зависит не только от площади сечения, поэтому при решении задач по сопромату не обойтись без определения геометрических характеристик фигур : статических, осевых, полярного и центробежного моментов инерции. Обязательно необходимо уметь определять положение центра тяжести сечения (от положения центра тяжести зависят перечисленные геометрические характеристики). К дополнению к геометрическим характеристикам простых фигур: прямоугольника, квадрата, равнобедренного и прямоугольного треугольников, круга, полукруга . Указаны центр тяжести и положение главных центральных осей, и определены относительно них геометрические характеристики при условии, что материал балки однородный.

Геометрические характеристики прямоугольника и квадрата

Осевые моменты инерции прямоугольника (квадрата)

Геометрические характеристики прямоугольного треугольника

Осевые моменты инерции прямоугольного треугольника

Геометрические характеристики равнобедренного треугольника

Осевые моменты инерции равнобедренного треугольника

Центр тяжести дуги окружности

Дуга имеет ось симметрии. Центр тяжести лежит на этой оси, т.е. y C = 0 .

dl – элемент дуги, dl = Rdφ , R – радиус окружности, x = Rcosφ , L = 2αR ,

Следовательно:

x C = R(sinα/α) .

Центр тяжести кругового сектора

Сектор радиуса R с центральным углом 2α имеет ось симметрии Ox , на которой находится центр тяжести.

Разбиваем сектор на элементарные секторы, которые можно считать треугольниками. Центры тяжести элементарных секторов располагаются на дуге окружности радиуса (2/3)R .

Центр тяжести сектора совпадает с центром тяжести дуги AB :

Полукруг :

37. Кинематика. Кинематика точки. Способы задания движения точки.

Кинематика – раздел механики, в котором изучаются движение материальных тел с геометрической точки зрения, без учета массы и действующих на них сил. Способы задания движения точки: 1) естественный, 2) координатный, 3) векторный.

Кинема́тика точки - раздел кинематики, изучающий математическое описание движения материпльных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Естественный сп . указывается траектория точки, закон ее движения по этой траектории, начало и направление отсчета дуговой координаты: s=f(t) – закон движения точки. При прямолинейном движении: х=f(t).

Координатный сп . положение точки в пространстве определяется тремя координатами, изменения которых определяют закон движения точки: x=f 1 (t), y=f 2 (t), z=f 3 (t).

Если движение в плоскости, то два уравнения движения. Уравнения движения описывают уравнение траектории в параметрической форме. Исключив из уравнений параметр t, получаем уравнение траектории в обычном виде:f(x,y)=0 (для плоск-ти).

Векторный сп . положение точки определяется ее радиус-вектором, проведенным из какого-либо центра. Кривая, которая вычерчивается концом какого-либо вектора, назыв. годографом этого вектора. Т.е. траектория – годограф радиус-вектора.

38.Связь между координатным и векторным, координатным и естественным способами задания движения точки.

СВЯЗЬ ВЕКТОРНОГО СПОСОБА С КООРДИНАТНЫМ И ЕСТЕСТВЕННЫМ выражается соотношениями:

где - орт касательной к траектории в данной точке, направленный в сторону отсчета расстояний, - орт нормали к траектории в данной точке, направленный в сторону центра кривизны (см. рис. 3).

СВЯЗЬ КООРДИНАТНОГО СПОСОБА С ЕСТЕСТВЕННЫМ . Уравнение траектории f(x, y)=z; f 1 (x, z)=y получается из уравнений движения в координатной форме посредством исключения времени t. Дополнительным анализом значений, которые могут принимать координаты точки, определяется тот участок кривой , который является траекторией. Например, если движение точки задано уравнениями: x=sin t; y=sin 2 t=x 2 , то траекторией точки является тот участок параболы у=х 2 , для которого -1≤x≤+1, 0≤x≤1. Начало и направление отсчета расстояний выбираются произвольно, этим в дальнейшем определяется знак скорости и величина и знак начального расстояния s 0 .

Закон движения определяется зависимостью:

знак + или - определяется в зависимости от принятого направления отсчета расстояний.

Скорость точки – это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета. Вектор скорости направлен по касательной к траектории точки в сторону движения

Вектор скорости (v) - это расстояние, которое тело проходит в определенном направлении за единицу времени. Обратите внимание, что определение вектора скорости очень похоже на определение скорости, за исключением одного важного различия: скорость тела не указывает направление движения, а вектор скорости тела указывает и скорость, и направление движения. Следовательно, необходимы две переменные, которые описывают вектор скорости тела: скорость и направление. Физические величины, у которых есть значение и направление, называют векторными величинами.

Вектор скорости тела может время от времени изменяться. Если или его скорость, или направление изменяются, скорость тела также меняется. Постоянный вектор скорости подразумевает неизменную скорость и неизменное направление, тогда как термин «постоянная скорость» подразумевает только неизменное значение, не принимая во внимание направление. Термин «вектор скорости» часто используется попеременно с термином «скорость». Они оба выражают расстояние, которое тело проходит в единицу времени

Ускорение точки – это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени. Ускорение характеризует изменение вектора скорости по величине и направлению и направлено в сторону вогнутости траектории.

Вектор ускорения

это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:

Центры тяжести некоторых простейших геометрических фигур

Для определения центров тяжести тел часто встречающейся формы (треугольника, дуги окружности, сектора, сегмента) удобно использовать справочные данные (см. табл.).


Координаты центра тяжести некоторых однородных тел

Наименование фигуры Рисунок
Дуга окружности : центр тяжести дуги однородной окружности находится на оси симметрии (координата у c R – радиус окружности.
Однородный круговой сектор у c = 0). где α – половина центрального угла; R – радиус окружности.
Сегмент : центр тяжести расположен на оси симметрии (координата у c = 0). где α – половина центрального угла; R – радиус окружности.
Полукруг :
Треугольник : центр тяжести однородного треугольника находится в точке пересечения его медиан. где x1, y1, x2, y2, x3, y3 – координаты вершин треугольника
Конус : центр тяжести однородного кругового конуса лежит на его высоте и отстоит на расстояние 1/4 высоты от основания конуса.
Полусфера : центр тяжести лежит на оси симметрии.
Трапеция: - площадь фигуры.
– площадь фигуры;

Под центром тяжести автомобиля предполагается условная точка, в которой сосредоточивается весь его вес. Местоположение центра тяжести оказывает существенное влияние на управляемость и устойчивость транспортного средства, это всегда должен учитывать водитель. Местоположение центра тяжести по высоте зависит от веса и характера груза. Допустим, если легковой автомобиль перевозит груз, расположенный только в кузове, то его центр тяжести будет гораздо ниже, чем при перевозке груза на багажнике, который находится над крышей. Однако, вне зависимости от характера груза и его размещения, центр тяжести груженой машины будет всегда выше, чем у негруженой. Ввиду этого, существующее мнение у многих водителей о хорошей устойчивости нагруженного автомобиля (а тем более уменьшении вероятности опрокидывания) – не верное.

Высота центра тяжести машины влияет на перераспределение нормальных реакций по колесам при разгоне и торможении, а также при наклонах машины, что будет отражаться на сцепной массе и, соответственно, на максимальной тяговой силе.

Местоположение центра тяжести автомобиля имеет большое значение. Оно характеризует устойчивость машины против опрокидывания. Это в наглядно отображается в автобусах со стоящими пассажирами, а также в большей степени актуально для автомобилей (автопоездов), которые перевозят высокогабаритные грузы, автомобилей-фургонов и специальных транспортных машин (автовышки, автокраны и т.д.).

Центр тяжести треугольника. Воспользуемся способом разбиения и разделим треугольник АВС на элементарные полоски, проведя линии, параллельные стороне АС треугольника. Каждую такую полоску можно принять за прямоугольник; центры тяжести этих прямоугольников находятся в их серединах, т.е. на медиане BD треугольника. Следовательно, центр тяжести треугольника должен лежать на этой же медиане BD .

Разбивая теперь треугольник на элементарные полоски линиями, параллельными стороне АВ , заключаем, что центр тяжести треугольника должен быть расположен на медиане ЕС .

Следовательно, центр тяжести треугольника находится в точке пересечения его медиан . Эта точка, как известно, делит каждую из медиан на отрезки в отношении , т.е .

Центр тяжести трапеции. Аналогично предыдущему, разобьем трапецию ABCD на элементарные полоски, параллельные основаниям ВС и АD . Центры тяжести полосок расположатся на прямой KL , соединяющей середины оснований трапеции. Следовательно, и центр тяжести трапеции лежит на этой прямой. Для того, чтобы найти его расстояние от нижнего основания, разобьем трапецию на треугольники АВС и АСD . Для этих треугольников соответственно имеем , , , .

Используя формулу (8.20), получаем

.

Центр тяжести дуги окружности. Рассмотрим дугу АDВ окружности радиуса с центральным углом . Поместим начало координат в центре окружности и направим ось перпендикулярно хорде АВ .

Так как вследствие симметрии фигуры относительно оси центр тяжести будет лежать на этой оси , т.е. , то остается только найти абсциссу центра тяжести ; для этого воспользуемся формулой (8.18).

Согласно рис. имеем , , и, следовательно,

, (8.22) где – половина центрального угла в радианах.

В частности, для дуги полуокружности будем иметь

Центр тяжести кругового сектора. Для определения положения центра тяжести кругового сектора разобьем его на элементарные секторы, как показано на рис. Каждый элементарный сектор можно принять за равнобедренный треугольник с высотой, равной . Но высота в равнобедренном треугольнике является также и его медианой; следовательно, центр тяжести каждого элементарного треугольника лежит на расстоянии от начала координат О . Соответственно геометрическим местом центров тяжести всех элементарных треугольников является дуга окружности радиусом .



Это означает, что центр тяжести площади кругового сектора можно искать как центр тяжести материальной линии, по которой непрерывно и равномерно распределен вес этого сектора. Применив формулу (8.22), получим координату центра тяжести площади сектора

, (8.23) где – половина центрального угла в радианах. В частности, для сектора в виде полукруга получим

Задача 8.3. Пластина получена из квадрата, сторона которого равна , после того, как из него была вырезана часть, составляющая четверть круга радиуса с центром в вершине А квадрата. Определить центр тяжести пластины.

или, подставляя соответствующие величины,

.

Приведем без вывода формулы, определяющие положения центров тяжести некоторых простейших однородных тел.

Математическая техника вычисления центра масс относится к области курсов математики; там подобные задачи служат хорошими примерами по интегральному исчислению. Но, даже умея интегрировать, полезно знать некоторые трюки для вычисления положения центра масс. Один из таких трюков основан на использовании так называемой теоремы Паппа, которая работает следующим образом. Если мы возьмем какую-то замкнутую фигуру и образуем твердое тело, вращая эту фигуру в пространстве так, чтобы каждая точка двигалась перпендикулярно к плоскости фигуры, то объем образующегося при этом тела равен произведению площади фигуры на расстояние, пройденное ее центром тяжести! Разумеется, эта теорема верна и в том случае, когда плоская фигура движется по прямой линии, перпендикулярной к ее площади, однако если мы движем ее по окружности или какой-то другой

кривой, то при этом получается гораздо более интересное тело. При движении по кривому пути внутренняя часть фигуры продвигается меньше, чем внешняя и эти эффекты компенсируют друг друга. Так что если мы хотим определить; центр масс плоской фигуры с однородной плотностью, то нужно помнить, что объем, образуемый вращением ее относительно оси, равен расстоянию, которое проходит центр масс, умноженному на площадь фигуры.
Например, если нам нужно найти центр масс прямоугольного треугольника с основанием D и высотой H (фиг. 19.2), то это делается следующим образом. Вообразите себе ось, проходящую вдоль H, и поверните треугольник на 360° вокруг этой оси. Это дает нам конус. Расстояние, которое проходит х-координата центра масс, равно 2πx, а площадь области, которая двигалась, т. е. площадь треугольника, равна l/2 HD. Произведение расстояния, пройденного центром масс, на площадь треугольника равно объему конуса, т. е. 1/3 πD 2 H. Таким образом, (2πх) (1/2HD) = 1/3D 2 H, или x= D/З. Совершенно аналогично вращением вокруг второго катета или просто по соображениям симметрии находим, что у = H/3. Вообще центр масс любого одноро дного треугольника находится в точке пересечения трех его медиан (линий, соединяющих вершину треугольника с серединой противоположной стороны), которая отстоит от основания на расстоянии, равном 1/3 длины каждой медианы.
Как это увидеть? Рассеките треугольник линиями, параллельными основанию, на множество полосок. Заметьте теперь, что медиана делит каждую по лоску пополам, следовательно, центр масс должен лежать на медиане.
Возьмем теперь более сложную фигуру. Предположим, что требуется найти положение центра масс однородного полукруга, т. е. круга, разрезанного пополам. Где будет находиться центр масс в этом случае? Для полного круга центр масс расположен в геометрическом центре, но для полукруга найти его положение труднее. Пусть r - радиус круга, а х - расстояние центра масс от прямолинейной границы полукруга. Вращая его вокруг этого края как вокруг оси, мы получаем шар. При этом центр масс проходит расстояние 2πх, а площадь полукруга равна 1/2πr 2 (половине площади круга). Так как объем шара равен, конечно, 4πг 3 /3, то отсюда находим

или

Существует еще другая теорема Паппа, которая фактически является частным случаем сформулированной выше теоремы, а потому тоже справедлива. Предположим, что вместо твердого полукруга мы взяли полуокружность, например кусок проволоки в виде полуокружности с однородной плотностью, и хотим найти ее центр масс. Оказывается, что площадь, которая «заметается» плоской кривой при ее движении, аналогичном вышеописанному, равна расстоянию, пройденному центром масс, умноженному на длину этой кривой. (Кривую можно рассматривать как очень узкую полоску и применять к ней предыдущую теорему.)

Загрузка...
Top