Технологические чертежи правильных треугольной и четырехугольной пирамид. Построение развертки поверхности треугольной пирамиды. Объемные макеты сложных фигур

Первый способ, как сделать пирамиду из бумаги.

1. Первым делом мы делаем сгибы руками. Для этого согните и разогните листок пополам, по вертикали, по горизонтали и по диагонали. Линии сгиба отмечены на картинке сплошными тонкими линиями. Затем согните уголки к центру, линия сгиба указана пунктиром.

2. Положите листок как указано на фото. Загните правый и левый угол к верхнему. Пунктиром обозначены линии сгиба. Далее расправляем верхний угол должен получиться квадрат.

3 . Сделайте сгибы верхнего квадрата, по линиям показанным на схеме. Они нам понадобятся для того чтобы ровнее заправить углы. Затем своими руками заправляем эти уголки во внутрь.

4 . Отогните верхний угол, затем поверните деталь на 180 градусов.

5 . С этой стороной проделываем всю ту же работу что описаны 3 и 4 шагах.

6 . Получим вот такую деталь. Поднимаем углы к верху

7 . Расправляем боковые углы. Тем самым выпрямляем дно нашей фигуры. Вот мы и подходим к завершению. Пирамида из бумаги практически готова.

8 . В завершении проглаживаем руками ребра дна пирамиды.

В принципе наша пирамида готова. В нее можно запаковать небольшой подарочек. Для этого необходимо сделать дыроколом отверстия в вершинах и продернуть через нее красивую веревочку. Будет очень красиво смотреться на елочке.

Наглядное видео, мастер класс по изготовлению оригами выше описанной фигуры.

Второй способ как сделать пирамиду из бумаги.

Данный вариант пирамиды чуть посложнее чем первый, вам потребуется побольше времени и терпения. Но зато результат получается очень необычный.

Нам понадобится 4 цветных листочка размером примерно 15 на 15 сантиметров.

1. Возьмите один лист и положите его цветной стороной вниз. Затем согните его пополам по вертикали, по горизонтали и разверните обратно.

2 . Низ листочка загните по центральной линии сгиба, затем разверните обратно.

3 . Загибаем нижний край наверх. Место сгиба обозначено пунктиром.

4 . Должно получиться вот так

5 . Складываем получившуюся фигуру пополам, примерное место сгиба обозначено на фото.

6 . Переворачиваем цветной стороной вверх.

7 . Загибаем левую и правую часть к центральной линии и разгибаем обратно.

8 . Загибаем лист по пунктирной линии.

9 . Загибаем подобным образом еще один угол.

10. Должно получиться вот так.

11. Далее нам нужно загнуть угол так что бы точки В и С соединились.

12. Вот что должно получиться

13. Сгибаем по пунктиру наверх.

14. Одна из четырех заготовок готова.

15. Все тоже самое делаем с тремя другими листочками. В результате получим 4 одинаковых фигуры. Они и будут являться сторонами нашей пирамиды.

16. Соединяем их друг с другом как указанно на фото.

Поздравляю вы справились с заданием. Вот так просто можно своими руками сделать необычную модель пирамиды.

Если у вас не получилось сделать какой-либо шаг, смотрите внимательно видео и пробуйте снова.

Шаблоны и макеты пирамиды для распечатки.

Данные шаблоны вы сможете распечатать на картоне, вырезать своими руками и склеить. Части фигуры заштрихованные или обозначены темным цветом точками необходимо проклеить во внутрь. Советуем вам линии сгиба проглаживать по линейке тупым предметом. Так ваша модель получится более ровно. После изготовления проявите фантазию и украсьте пирамиду цветными лентами. Так же можете разукрасить ее цветными карандашами и фломастерами. Поэкспериментируйте своими идеями для получения восхитительного результата.

Развертка пирамиды — очень быстрый и легкий способ изготовления своими руками. Готовое изделие своим видом напоминает египетское чудо света.

Можете посмотреть наш видео урок, по изготовлению фигуры по шаблону.

Развертка поверхности пирамиды - это плоская фигура, составленная из основания и граней пирамиды, совмещенных с некоторой плоскостью. На примере ниже мы рассмотрим построение развертки способом треугольников.

Пирамиду SABC пересекает фронтально-проецирующая плоскость α. Необходимо построить развертку поверхности SABC и нанести на нее линию пересечения.

На фронтальной проекции S""A""B""C"" отмечаем точки D"", E"" и F"", в которых след α v пересекается с отрезками A""S"", B""S"" и C""S"" соответственно. Определяем положение точек D", E", F" и соединяем их друг с другом. Линия пересечения обозначена на рисунке красным цветом.

Определение длины ребер

Чтобы найти натуральные величины боковых ребер пирамиды, воспользуемся методом вращения вокруг проецирующей прямой. Для этого через вершину S перпендикулярно горизонтальной плоскости H проведем ось i. Поворачивая вокруг нее отрезки SA, SB и SC, переместим их в положение, параллельное фронтальной плоскости V.

Действительные величины ребер равны проекциям S""A"" 1 , S"" 1 B"" 1 и S""C"" 1 . Отмечаем на них точки D"" 1 , E"" 1 , F"" 1 , как это показано стрелками на рисунке выше.

Треугольник ABC, лежащий в основании пирамиды, параллелен горизонтальной плоскости. Он отображается на ней в натуральную величину, равную ∆A"B"C".

Порядок построения развертки

В произвольном месте на чертеже отмечаем точку S 0 . Через нее проводим прямую n и откладываем отрезок S 0 A 0 = S""A"" 1 .

Строим грань ABS = A 0 B 0 S 0 как треугольник по трем сторонам. Для этого из точек S 0 и A 0 проводим дуги окружностей радиусами R 1 = S""B"" 1 и r 1 = A"B" соответственно. Пересечение данных дуг определяет положение точки B 0 .

Грани B 0 S 0 C 0 и C 0 S 0 A 0 строятся аналогично. Основание пирамиды в зависимости компоновки чертежа присоединяется к любой из сторон: A 0 B 0 , B 0 C 0 или C 0 A 0 .

Нанесем на развертку линию, по которой плоскость α пересекается с пирамидой. Для этого на ребрах S 0 A 0 , S 0 B 0 и S 0 С 0 отметим соответственно точки D 0 , E 0 и F 0 . При этом точка D 0 находится на пересечении отрезка S 0 A 0 с окружностью радиусом S""D"" 1 . Аналогично E 0 = S 0 B 0 ∩ S""E"" 1 , F 0 = S 0 C 0 ∩ S""F"" 1 .

Для изготовления кожухов машин, ограждений станков, вентиляционных устройств, трубопроводов необходимо из листового материала вырезать их развертки.

Разверткой поверхности многогранника называют плоскую фигуру, полученную при совмещении с плоскостью чертежа всех граней многогранника в последовательности их расположения на многограннике.

Чтобы построить развертку поверхности многогранника, нужно определить натуральную величину граней и вычертить на плоскости последовательно все грани. Истинные размеры ребер граней, если они спроецированы не в натуральную величину, находят способами вращения или перемены плоскостей проекций (проецированием на дополнительную плоскость), приведенными в предыдущем параграфе.

Рассмотрим построение разверток поверхности некоторых простейших тел.

Развертка поверхности прямой призмы представляет собой плоскую фигуру, составленную из боковых граней - прямоугольников и двух равных между собой многоугольников оснований. Для примера взята правильная прямая шестиугольная призма (рис. 176, а). Все боковые грани призмы - прямоугольники, равные между собой по ширине а и высоте Н; основания призмы - правильные шестиугольники со стороной, равной а. Так как истинные размеры граней нам известны, нетрудно выполнить построение развертки. Для этого на горизонтальной прямой последовательно откладывают шесть отрезков, равных стороне основания шестиугольника, т. е. 6а. Из полученных точек восставляют перпендикуляры, равные высоте призмы Н, и через конечные точки перпендикуляров проводят вторую горизонтальную прямую. Полученный прямоугольник (Н х 6а) является разверткой боковой поверхности призмы. Затем на одной оси пристраивают фигуры оснований - два шестиугольника со сторонами, равными а. Контур обводят сплошной основной линией, а линии сгиба - штрихпунктирной с двумя точками.

Подобным образом можно построить развертки прямых призм с любой фигурой в основании.

Развертка поверхности правильной пирамиды представляет собой плоскую фигуру, составленную из боковых граней - равнобедренных или равносторонних треугольников и правильного многоугольника основания. Для примера взята правильная четырехугольная пирамида (рис. 176, б). Решение задачи осложняется тем, что неизвестна величина боковых граней пирамиды, так как ребра граней не параллельны ни одной из плоскостей проекций. Поэтому построение начинают с определения истинной величины наклонного ребра SA. Определив способом вращения (см. рис. 173, в) истинную длину наклонного ребра SA, равную s"a` 1 (рис. 176, б), из произвольной точки О, как из центра, проводят дугу радиусом s"a` 1 . На дуге откладывают четыре отрезка, равные стороне основания пирамиды, которое спроецировано на чертеже в истинную величину. Найденные точки соединяют прямыми с точкой О. Получив развертку боковой поверхности, к основанию одного из треугольников пристраивают квадрат, равный основанию пирамиды.

Развертка поверхности прямого кругового конуса представляет собой плоскую фигуру, состоящую из кругового сектора и круга (рис. 176, в). Построение выполняют следующим образом. Проводят осевую линию и из точки, взятой на ней, как из центра, радиусом Rh равным образующей конуса sfd, очерчивают дугу окружности. В данном примере образующая, подсчитанная по теореме Пифагора, равна приблизительно

38 мм (L = √l5 2 + 35 2 = √l450 ≈ % 38 мм). Затем подсчитывают угол сектора по формуле

Развертка боковой поверхности пирамиды (рис. 16.3) состоит из трех треугольников, представляющих в истинном виде боковые грани пирамиды.

Для построения развертки необходимо предварительно определить истинные длины боковых ребер пирамиды. Повернув эти ребра вокруг высоты пирамиды до положения параллельного плоскости p 2 , на фронтальной плоскости проекций получим их истинные длины в виде отрезков и .

Построив по трем сторонам и грань пирамиды ASB (рис. 16.4) пристраиваем к ней смежную грань – треугольник BSC, а к последнему грань CSA. Полученная фигура представит собою развертку боковой поверхности данной пирамиды.

Для получения полной развертки к одной из сторон основания пристраиваем основание пирамиды – треугольник АВС.

Для построения на развертке линии, по которой поверхность пирамиды пересечется плоскостью a (рис. 16.3), надлежит нанести на ребра SA, SB и SC, соответственно, точки 1, 2 и 3, в которых эта плоскость пересекает ребра, определив истинные длины отрезков S1, S2 и S3.

Рис. 16.3 Рис. 16.4

Контрольные вопросы по теме лекции:

1. Что называется разверткой поверхности?

2. Какие поверхности называются развертываемыми или неразвертываемыми. Приведите примеры.

3. Общие правила построения разверток поверхности призмы, пирамиды.

Чертеж — первый и очень важный шаг в решении геометрической задачи. Каким должен быть рисунок правильной пирамиды?

Сначала вспомним свойства параллельного проектирования :

— параллельные отрезки фигуры изображаются параллельными отрезками;

— сохраняется отношение длин отрезков параллельных прямых и отрезков одной прямой.

Рисунок правильной треугольной пирамиды

Сначала изображаем основание. Поскольку при параллельном проектировании углы и отношения длин не параллельных отрезков не сохраняются, правильный треугольник в основании пирамиды изображается произвольным треугольником.

Центр правильного треугольника — точка пересечения медиан треугольника. Поскольку медианы в точке пересечения делятся в отношении 2:1, считая от вершины, мысленно соединяем вершину основания с серединой противолежащей стороны, приблизительно делим ее на три части, и на расстоянии 2 частей от вершины ставим точку. Из этой точки вверх проводим перпендикуляр. Это — высота пирамиды. Перпендикуляр рисуем такой длины, чтобы боковое ребро не закрывало изображение высоты.

Рисунок правильной четырехугольной пирамиды

Рисунок правильной четырехугольной пирамиды также начинаем с основания. Поскольку параллельность отрезков сохраняется, а величины углов — нет, то квадрат в основании изображается параллелограммом. Желательно острый угол этого параллелограмма делать поменьше, тогда боковые грани получаются больше. Центр квадрата — точка пересечения его диагоналей. Проводим диагонали, из точки пересечения восстанавливаем перпендикуляр. Этот перпендикуляр — высота пирамиды. Выбираем длину перпендикуляра таким образом, чтобы боковые ребра не сливались между собой.

Рисунок правильной шестиугольной пирамиды

Поскольку при параллельном проектировании параллельность отрезков сохраняется, основание правильной шестиугольной пирамиды — правильный шестиугольник — изображаем шестиугольником, у которого противолежащие стороны параллельны и равны. Центр правильного шестиугольника — точка пересечения его диагоналей. Чтобы не загромождать рисунок, диагонали не проводим, а находим эту точку приблизительно. Из нее восстанавливаем перпендикуляр — высоту пирамиды — так, чтобы боковые ребра не сливались между собой.

Загрузка...
Top