Что называется моментом инерции тела относительно оси. Момент инерции. Центральный момент инерции

Введенные формулами (3.26), (3.27) величины оказываются существенно необходимыми при изучении динамики вращательных движений твердого тела или системы тел. Эти характеристики инерции зависят как от положения начала координат, так и от направлений выбранных коор­динатных осей. Однако в данной точке тела шесть величин вместе с суммарной массой М пол­ностью определяют его инерцию. Иначе говоря, зная эти ве­личины, можно найти момент инерции относительно оси про­извольного направления и центробежный момент инерции для пары новых (повернутых) осей, а также, при известной геометрии тела, перейти к инерционным характеристикам, определенным для другого начала координат. Пусть требуется найти момент инерции относительного заданного направления (оси ξ ), характеризуемого ортом . Моментом инерции системы материальных точек относи­тельно оси называется сумма произведений масс этих точек на квадраты их расстояний до оси

Легко сообразить, что квадрат расстояния h, , можно подсчи­тать по формуле (рис. 53)

(3.28)

Запишем полученное выражение (3.29) иначе

Мы изменили порядок сомножителей во втором скалярном произведении и отбросили скобки; первое делать можно, а второе? При этом появилась новая величина , в которой два вектора перемножаются, но не скалярно и не векторно, а каким-то новым способом; такое умножение на­зываетсядиадным (или тензорным),а само произведение - диадой, которая представляет собой тензор второго ранга. Аналитическое определение тензора состоит в следующем: совокупность Зn величин (в трехмерном пространстве), преобразующихся при повороте координатной системы как произведения n координат, называется тензором n-го ранга. По этому определению диада будет тензором 2-го ранга, вектор -тензором 1-го ранга, а скалярная величина - тензором нулевого ранга. Очевидно, что диада не изменится при перестановке ее сомножителей - это симметричная диада. Более общий случай получим, перемножая два разных вектора, например и ; диада уже не будет симметричнойи переставлять сомножители у нее нельзя:

Так как векторы и можно представить в виде

то диада может быть записана в виде суммы девяти сла­гаемых

(3.30)

Здесь ….. элементарные диады, а коэффици­енты при них называются составляющими или компонентами тензора. Тензор второго ранга (диаду) можно записать также в виде квадратной матрицы. Так, для тензора (3.30)

(3.31)

Хотя развернутый вид (3.30) тензора и не имеет таблич­ного вида (3.31), однако положение каждой составляющей в таб­лице устанавливается сразу по ее множителю - элементар­ной диаде: левый орт указывает строку, а правый орт - стол­бец, орты соответствуют положению данной составляющей в матрице (3.31). Теперь легко понять неравенство ; пе­рестановка сомножителей в диаде означает замену строк столбцами (и наоборот) в матрице (3.31), а тензор будет транспонированным по отношению к первоначальному тен­зору .Из теории матриц известно, что квадратную матрицу (3.31) можно умножить справа на вектор-столбец или слева на вектор-строку. Запись тензора в форме (3.30) позволяет эти операции свести к скалярному умножению ортов. Тензор второго ранга можно умножить скалярно как справа, так и слева на вектор а ; при этом результат будет различным, так как при правом умножении тензора на вектор будут по­являться скалярные произведения правых ортов элементар­ных диад на орты вектора, а при левом умножении вектора на тензор в скалярных произведениях будут участвовать левые орты элементарных диад. В результате останутся орты элементарных диад, которые не участвовали в скаляр­ных произведениях, поэтому скалярное произведение тензора и вектора будет векторной величиной. Легко сообразить, что , где означает транспонированный тензор. В случае сим­метричного тензора транспонированный тензор равен перво­начальному и разница между правым и левым произведени­ями исчезает. В нашем случае симметричный тензор и его разверну­тое выражение типа (3.29) оказывается проще:

Если тензор (второго ранга) умножать скалярно на век­торы и слева, и справа, то участвовать в скалярных произве­дениях будут как левые, так и правые орты элементарных диад, и в результате получится скалярная величина. Именно это мы имеем в формуле (3.29). Записывая эту формулу в виде

где тензор представлен выше в виде (3.32), сразу понимаем, что в результате двойного скалярного перемножения в (3.33) исчезают те слагаемые, в которых встречаются произведе­ния (скалярные) разных ортов. Остающиеся слагаемые легко написать сразу; это будут те же компоненты тензора , что и представленные в формуле (3.32), только орты в этой фор­муле следует заменить на соответствующие проекции вектора . Тогда получим

Сравнивая результат (3.34) с формулой (3.38а), убеждаемся и законности опускания скобок в формуле (3.29). Простейшим тензором второго ранга будет единичный тензор:

(3.35)

Нетрудно сообразить, что диагональные элементы мат­рицы, соответствующей тензору (3.35), будут единицами, а остальные, недиагональные - нулями. Название «единич­ный тензор» совершенно оправдано, так как, умножая на него любой вектор (справа или слева - это безразлично), мы опять получим вектор :

Это свойство единичного тензора приводит к следую­щему интересному соотношению:

(3.36)

Соотношения (3.36) и (3.29) позволяют написать формулу (3.28) В ином виде

= (3.38)

Величина

= , (3.39)

вошедшая в выражение для (формула 3.38), представляет собой тензор инерции твердого тела в точке О . Вводя этот тензор, переписываем формулу (3.38) для момента инерции относи­тельно оси , заданной направлением орта , в очень про­стом виде

ОПРЕДЕЛЕНИЕ

Мерой инертности вращающегося тела является момент инерции (J) относительно оси, вокруг которой происходит вращение.

Это скалярная (в общем случае тензорная) физическая величина, которая равна произведению масс материальных точек () на которые следует провести разбиение рассматриваемого тела, на квадраты расстояний () от них до оси вращения:

где r - функция положения материальной точки в пространстве; - плотность тела; -объем элемента тела.

Для однородного тела выражение (2) можно представить как:

Момент инерции в международной системе единиц измеряется в:

Величина J входит в основные законы, при помощи которых описывают вращение твердого тела.

В общем случае величина момента инерции зависит от направления оси вращения, а так как в процессе движения вектор обычно изменяет свое направление относительно тела, то момент инерции следует рассматривать как функцию времени. Исключением является момент инерции тела, вращающегося вокруг неподвижной оси. В таком случае момент инерции остается постоянным.

Теорема Штейнера

Теорема Штейнера дает возможность вычислить момент инерции тела относительно произвольной оси вращения, когда является известным момент инерции рассматриваемого тела по отношению к оси, проходящей через центр масс этого тела и эти оси являются параллельными. В математическом виде теорема Штейнера представляется как:

где - момент инерции тела относительно оси вращения, проходящей через центр масс тела; m - масса, рассматриваемого тела; a- расстояние между осями. Обязательно следует помнить, что оси должны быть параллельны. Из выражения (4) следует, что:

Некоторые выражения для вычисления моментов инерции тела

При вращении вокруг оси материальная точка имеет момент инерции равный:

где m - масса точки; r - расстояние от точки до оси вращения.

Для однородного тонкого стержня массой m и длиной l J относительно оси, проходящей через его центр масс (ось перпендикулярна стержню), равен:

Тонкое кольцо, с массой вращающееся около оси, которая проходит через его центр, перпендикулярно плоскости кольца, то момент инерции вычисляется как:

где R - радиус кольца.

Круглый однородный диск, радиуса R и массы m имеет J относительно оси, проходящей через его центр и перпендикулярной плоскости диска, равный:

Для однородного шара

где m - масса шара; R - радиус шара. Шар вращается около оси, которая проходит через его центр.

Если осями вращения являются оси прямоугольной декартовой системы координат, то для непрерывного тела моменты инерции можно вычислить как:

где - координаты бесконечно малого элемента тела.

Примеры решения задач

ПРИМЕР 1

Задание Два шарика, которые можно считать точечными, скреплены тонким невесомым стержнем. Длина стержня l. Каков момент инерции данной системы, по отношению к оси, которая проходит перпендикулярно стержню через центр масс. Массы точек одинаковы и равны m.
Решение Найдем момент инерции одного шарика () относительно оси, находящейся от него на расстоянии :

Момент инерции второго шарика будет равен :

Суммарный момент инерции системы равен сумме:

Ответ

ПРИМЕР 2

Задание Каков момент инерции физического маятника относительно оси, которая проходит через точку O (рис.1)? Ось перепендикулярна плоскости рисунка. Считайте, что физический маятник состоит из тонкого стержня длины l, имеющего массу m и диска массы . Диск прикреплен к нижнему концу стержня и имеет радиус равный

Решение Момент инерции нашего маятника (J) будет равен сумме момента инерции стержня (), вращающегося относительно оси, проходящей через точку О и диска (), вращающегося вокруг той же оси:

1.10. УРАВНЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Твердое тело как система материальных точек. Движение центра инерции твердого тела. Кинетическая энергия вращающе гося тела. Понятие момента инерции относительно неподвижной оси. Теорема Штейнера. Моменты инерции некоторых простейших тел. Уравнение динамики вращательного движения относительно неподвижной оси.

Движение твердого тела в общем случае определяется двумя векторными уравнениями. Одно из них - уравнение движения центра масс (4.11), другое-уравнение моментов в С -системе (6.24):

(10 . 1 )

Зная законы действующих внешних сил, точки их приложения и начальные условия, можно с помощью этих уравнений найти как скорость, так и положение каждой точки твердого тела в любой момент времени, т. е. полностью решить задачу о движении тела. Однако, несмотря на кажущуюся простоту уравнений (10.1), решение их в общем случае представляет собой весьма трудную задачу. Это прежде всего обусловлено тем обстоятельством, что связь между собственным моментом импульса и скоростями отдельных точек твердого тела в С -системе оказывается сложной, за исключением немногих частных случаев. Мы не будем рассматривать эту задачу в общем виде (она решается в курсе теоретической механики) и ограничимся в дальнейшем только отдельными частными случаями.

Если перенести силы вдоль направления их действия, то ясно, что не изменятся ни их результирующая , ни их суммарный момент . При этом уравнения (10.1) тоже не изменятся, а следовательно не изменится и движение твердого тела. Поэтому точки приложения внешних сил можно переносить вдоль направления действия сил - удобный прием решения задач, которым постоянно пользуются.

Рассмотрим теперь понятие равнодействующей силы. В тех случаях, когда суммарный момент всех внешних сил оказывается перпендикулярным результирующей силе, т. е. , все внешние силы могут быть сведены к одной силе , действующей вдоль определенной прямой. В самом деле, если относительно некоторой точки О суммарный момент , то всегда можно найти такой вектор (рис. 10.1), что при заданных и

При этом выбор неоднозначен: прибавление к нему любого вектора ,

параллельного , не изменит последнего равенства. А это означает, что данное равенство определяет не точку "приложения" силы , а линию ее действия. Зная модули M и F соответствующих векторов, можно найти плечо l силы (рис.6.14): .

Таким образом, если , систему сил, действующих на отдельные точки твердого тела, можно заменить одной равнодействующей силой - силой, которая равна результирующей и создает момент, равный суммарному моменту всех внешних сил.

Таким случаем является действие однородного силового поля, например поля тяжести, в котором действующая на каждую частицу сила имеет вид . В этом случае суммарный момент сил тяжести относительно любой точки О равен

Стоящая в круглых скобках сумма, равна где масса тела радиус-вектор его центра масс относительно точки O . Поэтому

Это означает, что равнодействующая сил тяжести проходит через центр масс тела. Обычно говорят, что равнодействующая сил тяжести приложена к центру масс тела или к его центру тяжести. Момент этой силы относительно центра масс тела равен нулю.

Теперь перейдем к рассмотрению частных случаев движения твердого тела.

Вращение вокруг неподвижной оси.

Рассмотрим вращение твердого тела вокруг неподвижной оси. Найдем выражение для момента импульса твердого тела относительно оси 00" (рис. 6.15). Момент импульса частицы можно записать в виде

где и - масса и расстояние от оси вращения частицы твердого тела, - его угловая скорость. Обозначив величину, стоящую в круглых скобках, через I, получим

(10 .2)

Моментом инерции материальной точки относительно оси вращения называется произведение массы этой точки на квадрат кратчайшего расстояния от оси.

Моментом инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.

Момент инерции твердого тела зависит от распределения масс относительно интересующей нас оси и является величиной аддитивной. Вычисление момента инерции тела проводится по формуле

где dm и dV - масса и объем элемента тела, находящегося на расстоянии от интересующей нас оси z, - плотность тела в данной точке.

Моменты инерции некоторых однородных твердых тел относительно оси, проходящей через центр масс тела, приведены в следующей таблице (здесь т - масса тела):

Вид твердого тела

Положение оси

Момент инерции

Тонкий стержень длины L

Перпендикулярно стержню

Сплошной цилиндр радиуса R

Совпадает с осью цилиндра

Тонкий диск радиуса R

Совпадает с диаметром диска

Шар радиуса R

Проходит через центр шара

Вычисление момента инерции твердого тела произвольной формы относительно той или иной оси представляет собой, вообще говоря, довольно кропотливую в математическом отношении задачу. Однако в некоторых случаях нахождение момента инерции значительно упрощается, если воспользоваться теоремой Штейнера : момент инерции I относительно произвольной оси z равен моменту инерции относительно оси параллельной данной и проходящей через центр масс С тела, плюс произведение массы т тела нa квадрат расстояния а между осями:

(10 . 4 )

Таким образом, если известен момент инерции то нахождение момента инерции I элементарно. Например, момент инерции тонкого стержня (массы т и длины l ) относительно оси, перпендикулярной стержню и проходящей через его конец, равен

Кинетическая энергия вращательного движения - энергия тела, связанная с его вращением. Получим выражение для кинетической энергии вращающегося твердого тела с неподвижной осью вращения. Учитывая связь скорости частицы вращающегося твердого тела с угловой скоростью запишем

или, более коротко

где - момент инерции тела относительно оси вращения, проходящей через его центр масс, -угловая скорость тела, т - его масса, - скорость центра инерции тела в K-системе отсчета. Таким образом, кинетическая энергия твердого тела при плоском движении складывается из энергии вращения в С-системе и энергии, связанной с движением центра масс .

Запишем основное уравнение динамики вращения твердого тела с неподвижной осью вращения. Это уравнение легко получить, как следствие как следствие уравнения моментов для материальной точки, если продифференцировать (10.2) по времени, тогда

(10 . 7 )

где - суммарный момент всех внешних сил относительно оси вращения, проекция углового ускорения на ось вращения. Из этого уравнения, в частности, видно, что момент инерции I определяет инерционные свойства твердого тела при вращении: при одном и том же значении момента сил тело с большим моментом инерции приобретает меньшее угловое ускорение. Моменты сил относительно оси - величины алгебраические: их знаки зависят как от выбора положительного направления оси z , совпадающей с осью вращения, так и от направления

"вращения" соответствующего момента силы. Например, выбрав положительное направление оси z , как показано на рис. 10.3, мы тем самым задаем и положительное направление отсчета угла - оба эти направления связаны правилом правого винта. Полагают, что если некоторый момент "вращает" в положительном направлении угла, то он считается положительным, и наоборот. А знак суммарного момента в свою очередь определяет знак - проекции вектора углового ускорения на ось z.

Интегрирование уравнения (10.7) с учетом начальных условий -значений угловой скорости и угла и начальный момент времени - позволяет полностью решить задачу о вращении твердого тела вокруг неподвижной оси, т. е. найти зависимость от времени угловой скорости и угла поворота.

Заметим, что уравнение (10.7) справедливо в любой системе отсчета, жестко связанной с осью вращения. Однако если система отсчета неинерциальная, то необходимо помнить, что момент сил включает в себя не только моменты сил взаимодействия с другими телами, но и моменты сил инерции.

Рассмотрим материальную точку массой m, которая находится на расстоянии r, от неподвижной оси (рис. 26). Моментом инерции J материальной точки относительно оси называется скалярная физическая величина, равная произведению массы m на квадрат расстояния r до этой оси:

J = mr 2 (75)

Момент инерции системы N материальных точек будет равен сумме моментов инерции отдельных точек:

Рис. 26.

К определению момента инерции точки.

Если масса распределена в пространстве непрерывно, то суммирование заменяется интегрированием. Тело разбивается на элементарные объемы dv, каждый из которых обладает массой dm.

В результате получается следующее выражение:

Для однородного по объему тела плотность ρ постоянна, и записав элементарную массу в виде:

dm = ρdv, преобразуем формулу (70) следующим образом:

Размерность момента инерции - кг*м 2 .

Момент инерции тела является мерой инертности тела во вращательном движении, подобно тому, как масса тела является мерой его инертности при поступательном движении.

Момент инерции — это мера инертных свойств твердого тела при вращательном движении, зависящая от распределения массы относительно оси вращения. Иными словами, момент инерции зависит от массы, формы, размеров тела и положения оси вращения.

Всякое тело, независимо от того, вращается оно или покоится, обладает моментом инерции относительно любой оси, подобно тому, как тело обладает массой независимо от того, движется оно или находиться в покое. Аналогично массе момент инерции является величиной аддитивной.

В некоторых случаях теоретический расчёт момента инерции достаточно прост. Ниже приведены моменты инерции некоторых сплошных тел правильной геометрической формы относительно оси, проходящей через центр тяжести.

Момент инерции бесконечно плоского диска радиуса R относительно оси, перпендикулярной плоскости диска :

Момент инерции шара радиуса R :

Момент инерции стержня длиной L относительно оси, проходящей через середину стержня перпендикулярно ему:

Момент инерции бесконечно тонкого обруча радиуса R относительно оси, перпендикулярной его плоскости:

Момент инерции тела относительно произвольной оси рассчитывается с помощью теоремы Штейнера :

Момент инерции тела относительно произвольной оси равен сумме момента инерции относительно оси, проходящей через центр масс параллельно данной, и произведения массы тела на квадрат расстояния между осями.

Рассчитаем при помощи теоремы Штейнера момент инерции стержня длиной L относительно оси, проходящей через конец перпендикулярно ему (рис. 27).

К расчету момента инерции стержня

Согласно теореме Штейнера, момент инерции стержня относительно оси O′O′ равен моменту инерции относительно оси OO плюс md 2 . Отсюда получаем:


Очевидно: момент инерции неодинаков относительно разных осей, и поэтому, решая задачи на динамику вращательного движения, момент инерции тела относительно интересующей нас оси каждый раз приходится искать отдельно. Так, например, при конструировании технических устройств, содержащих вращающиеся детали (на железнодорожном транспорте, в самолетостроении, электротехнике и т. д.), требуется знание величин моментов инерции этих деталей. При сложной форме тела теоретический расчет его момента инерции может оказаться трудно выполнимым. В этих случаях предпочитают измерить момент инерции нестандартной детали опытным путем.

Момент силы F относительно точки O

Моментом инерции тела (системы) относительно данной оси Oz (или осевым моментом инерции) называется скалярная величина, разная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси:

Из определения следует, что момент инерции тела (или системы) относительно любой оси является величиной положительной и не равной нулю.

В дальнейшем будет показано, что осевой момент инерции играет при вращательном движении тела такую же роль, какую масса при поступательном, т. е. что осевой момент инерции является мерой инертности тела при вращательном движении.

Согласно формуле (2) момент инерции тела равен сумме моментов инерции всех его частей относительно той же оси. Для одной материальной точки, находящейся на расстоянии h от оси, . Единицей измерения момента инерции в СИ будет 1 кг (в системе МКГСС - ).

Для вычисления осевых моментов инерции можно расстояния точек от осей выражать через координаты этих точек (например, квадрат расстояния от оси Ох будет и т. д.).

Тогда моменты инерции относительно осей будут определяться формулами:

Часто в ходе расчетов пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси называется линейная величина определяемая равенством

где М - масса тела. Из определения следует, что радиус инерцни геометрически равен расстоянию от оси той точки, в которой надо сосредоточить массу всего тела, чтобы момент инерции одной этой точки был равен моменту инерции всего тела.

Зная радиус инерции, можно по формуле (4) найти момент инерции тела и наоборот.

Формулы (2) и (3) справедливы как для твердого тела, так и для любой системы материальных точек. В случае сплошного тела, разбивая его на элементарные части, найдем, что в пределе сумма, стоящая в равенстве (2), обратится в интеграл. В результате, учитывая, что где - плотность, а V - объем, получим

Интеграл здесь распространяется на весь объем V тела, а плотность и расстояние h зависят от координат точек тела. Аналогично формулы (3) для сплошных тел примут вид

Формулами (5) и (5) удобно пользоваться при вычислении моментов инерции однородных тел правильной формы. При этом плотность будет постоянной и выйдет из-под знака интеграла.

Найдем моменты инерции некоторых однородных тел.

1. Тонкий однородный стержень длиной l и массой М. Вычислим его момент инерции относительно оси перпендикулярной стержню и проходящей через его конец А (рис. 275). Направим вдоль АВ координатную ось Тогда для любого элементарного отрезка длины d величина , а масса , где - масса единицы длины стержня. В результате формула (5) дает

Заменяя здесь его значением, найдем окончательно

2. Тонкое круглое однородное кольцо радиусом R и массой М. Найдем его момент инерции относительно оси перпендикулярной плоскости кольца и проходящей через его центр С (рис. 276).

Так как все точки кольца находятся от оси на расстоянии то формула (2) дает

Следовательно, для кольца

Очевидно, такой же результат получится для момента инерции тонкой цилиндрической оболочки массой М и радиусом R относительно ее оси.

3. Круглая однородная пластина или цилиндр радиусом R и массой М. Вычислим момент инерции круглой пластины относительно оси перпендикулярной пластине и проходящей через ее центр (см. рис. 276). Для этого выделим элементарное кольцо радиусом и шириной (рис. 277, а). Площадь этого кольца , а масса где - масса единицы площади пластины. Тогда по формуле (7) для выделенного элементарного кольца будет а для всей пластину

Загрузка...
Top