Средняя и истинная скорость точки. Сложное движение точки. Пример решения задачи. Вектор скорости материальной точки

И зачем она нужна. Мы уже знаем, что такое система отсчета, относительность движения и материальная точка. Что ж, пора двигаться дальше! Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики и приведем практический пример решения задачи.

Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.

Формулы скорости (ускорения) точек твердого тела, выраженные через скорость (ускорение) полюса и угловую скорость (ускорение). Вывод этих формул из принципа, что расстояния между любыми точками тела, при его движении, остаются постоянными.

Содержание

Основные формулы

Скорость и ускорение точки твердого тела с радиус вектором определяются по формулам:
;
.
где - угловая скорость вращения, - угловое ускорение. Они равны для всех точек тела и могут изменяться со временем t .
и - скорость и ускорение произвольным образом выбранной точки A с радиус вектором . Такую точку часто называют полюсом.
Здесь и далее, произведения векторов в квадратных скобках означают векторные произведения.

Вывод формулы для скорости

Выберем прямоугольную неподвижную систему координат Oxyz . Возьмем две произвольные точки твердого тела A и B . Пусть (x A , y A , z A ) и (x B , y B , z B ) - координаты этих точек. При движении твердого тела они являются функциями от времени t . Их производные по времени t являются проекциями скоростей точек:
, .

Воспользуемся тем, что при движении твердого тела, расстояние | AB| между точками остается постоянным, то есть не изменяется со временем t . Также постоянным является квадрат расстояния
.
Продифференцируем это уравнение по времени t , применяя правило дифференцирования сложной функции.

Сократим на 2 .
(1)

Введем векторы
,
.
Тогда уравнение (1) можно представить в виде скалярного произведения векторов:
(2) .
Отсюда следует, что вектор перпендикулярен вектору . Воспользуемся свойством векторного произведения. Тогда можно представить в виде:
(3) .
где - некоторый вектор, который мы вводим только для того, чтобы автоматически выполнялось условие (2) .
Запишем (3) в виде:
(4) ,

Теперь займемся изучением свойств вектора . Для этого составим уравнение, которое не содержит скоростей точек. Возьмем три произвольные точки твердого тела A, B и C . Запишем для каждой пары этих точек уравнение (4) :
;
;
.
Сложим эти уравнения:

.
Сокращаем сумму скоростей в левой и правой части. В результате получаем векторное уравнение, содержащее только исследуемые векторы :
(5) .

Легко заметить, что уравнение (5) имеет решение:
,
где - какой-то вектор, имеющий равное значение для любых пар точек твердого тела. Тогда уравнение (4) для скоростей точек тела примет вид:
(6) .

Теперь рассмотрим уравнение (5) с математической точки зрения . Если записать это векторное уравнение по компонентам на оси координат x, y, z , то векторное уравнение (5) является линейной системой, состоящей из 3-ех уравнений с 9-ю переменными:
ω BAx , ω BAy , ω BAz , ω CBx , ω CBy , ω CBz , ω ACx , ω ACy , ω ACz .
Если уравнения системы (5) линейно не зависимы, то их общее решение содержит 9 - 3 = 6 произвольных постоянных. Поэтому мы нашли не все решения. Существуют еще какие-то. Чтобы их найти замечаем, что найденное нами решение полностью определяет вектор скорости . Поэтому дополнительные решения не должны приводить к изменению скорости. Заметим, что векторное произведение двух равных векторов равно нулю. Тогда, если в (6) к вектору прибавить член, пропорциональный , то скорость не изменится:


.

Тогда общее решение системы (5) имеет вид:
;
;
,
где C BA , C CB , C AC - постоянные.

Выпишем общее решение системы (5) в явном виде.
ω BAx = ω x + C BA (x B - x A )
ω BAy = ω y + C BA (y B - y A )
ω BAz = ω z + C BA (z B - z A )
ω CBx = ω x + C CB (x C - x B )
ω CBy = ω y + C CB (y C - y B )
ω CBz = ω z + C CB (z C - z B )
ω ACx = ω x + C AC (x A - x C )
ω ACy = ω y + C AC (y A - y C )
ω ACz = ω z + C AC (z A - z C )
Это решение содержит 6 произвольных постоянных:
ω x , ω y , ω z , C BA , C CB , C AC .
Как и должно быть. Таким образом, мы нашли все члены общего решения системы (5) .

Физический смысл вектора ω

Как уже указывалось, члены вида не влияют на значения скоростей точек. Поэтому их можно опустить. Тогда скорости точек твердого тела связаны соотношением:
(6) .

Это вектор угловой скорости твердого тела

Выясним физический смысл вектора .
Для этого положим v A = 0 . Это всегда можно сделать если выбрать систему отсчета, которая в рассматриваемый момент времени движется относительно неподвижной системы со скоростью . Начало системы отсчета O поместим в точку A . Тогда r A = 0 . И формула (6) примет вид:
.
Ось z системы координат направим вдоль вектора .
По свойству векторного произведения, вектор скорости перпендикулярен векторам и . То есть он параллелен плоскости xy . Модуль вектора скорости:
v B = ω r B sin θ = ω |HB| ,
где θ - это угол между векторами и ,
|HB| - это длина перпендикуляра, опущенного из точки B на ось z .

Если вектор не меняется со временем, то точка B движется по окружности радиуса |HB| со скоростью
v B = |HB| ω .
То есть ω - это угловая скорость вращения точки B вокруг точки H .
Таким образом, мы приходим к выводу, что - это вектор мгновенной угловой скорости вращения твердого тела .

Скорость точек твердого тела

Итак, мы нашли, что скорость произвольной точки B твердого тела определяется по формуле:
(6) .
Она равна сумме двух членов. Точку A часто называют полюсом . В качестве полюса обычно выбирают неподвижную точку или точку, совершающую движение с известной скоростью. Второй член представляет собой скорость вращения точек тела относительно полюса A .

Поскольку точка B - это произвольная точка, то в формуле (6) можно сделать подстановку . Тогда и скорость точки твердого тела с радиус вектором определяются по формуле:
.
Скорость произвольной точки твердого тела равна сумме скорости поступательного движения полюса A и скорости вращательного движения относительно полюса A .

Ускорение точек твердого тела

Теперь выведем формулу для ускорения точек твердого тела. Ускорение - это производная скорости по времени. Дифференцируем формулу для скорости
,
применяя правила дифференцирования суммы и произведения:
.
Вводим ускорение точки A
;
и угловое ускорение тела
.
Далее замечаем, что
.
Тогда
.
Или
.

То есть вектор ускорения точек твердого тела можно представить в виде суммы трех векторов:
,
где
- ускорение произвольно выбранной точки, которую часто называют полюсом ;
- вращательное ускорение ;
- осестремительное ускорение .

Если угловая скорость изменяется только по величине и не изменяется по направлению, то векторы угловой скорости и ускорения направлены вдоль одной прямой. Тогда направление вращательного ускорения совпадает или противоположно направлению скорости точки. Если угловая скорость изменяется по направлению, то вращательное ускорение и скорость могут иметь разные направления.

Осестремительное ускорение всегда направлено в сторону мгновенной оси вращения так, что пересекает ее под прямым углом.

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

Рис. 1.8. Среднее ускорение. В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Введем единичный вектор τ, связанный с движущейся точкой A и направленный по касательной к траектории в сторону возрастания дуговой координаты (рис. 1.6). Очевидно, что τ - переменный вектор: он зависит от l. Вектор скорости v точки A направлен по касательной к траектории, поэтому его можно представить так

где v τ =dl/dt - проекция вектора v на направление вектора τ, причем v τ - величина алгебраическая. Кроме того, |v τ |=|v|=v.

Ускорение точки

Продифференцируем (1.22) по времени

(1.23)

Преобразуем последний член этого выражения

(1.24)

Определим приращение вектора τ на dl (рис. 1.7).


Как видно из рис. 1.7, угол , откуда , причем при .

Введя единичный вектор n нормали к траектории в точке 1, направленный к центру кривизны, запишем последнее равенство в векторном виде

Подставим (1.23) в (1.24) и полученное выражение в (1.22). В результате найдем

(1.26)

Здесь первое слагаемое называют тангенциальным a τ , второе - нормальным a n .

Таким образом, полное ускорение a точки может быть представлено как геометрическая сумма тангенциального и нормального ускорений.

Модуль полного ускорения точки

(1.27)

Направлено оно в сторону вогнутости траектории под углом α к вектору скорости, причем .

Если угол α острый, то tgα>0, следовательно, dv/dt>0, так как v 2 /R>0 всегда.

В данном случае величина скорости возрастает с течением времени - движение называют ускоренным (рис. 1.8).

В том случае, когда скорость с течением времени уменьшается по величине, движение называется замедленным (рис. 1.9).

Если же угол α=90°, tgα=∞, то есть dv/dt=0. В этом случае скорость с течением времени по величине не изменяется, а полное ускорение будет равно центростремительному

(1.28)

В частности, полное ускорение равномерного вращательного движения (R=const, v=const) есть центростремительное ускорение, по величине равное a n =v 2 /R и направленное все время к центру.

При прямолинейном движении, наоборот, полное ускорение тела равно тангенциальному. В данном случае a n =0, так как прямолинейную траекторию можно считать окружностью бесконечно большого радиуса, а при R→∞; v 2 /R=0; a n =0; a=a τ .

Механическим движением называют изменение с течением вре­мени положения в пространстве точек и тел относительно какого-либо основного тела, с которым скреплена система отсчета. Кинема­тика изучает механическое движение точек и тел независимо от сил, вызывающих эти движения. Всякое движение, как и покой, относи­тельно и зависит от выбора системы отсчета.

Траекторией точки называют непрерывную линию, описывае мую движущейся точкой. Если траектория - прямая линия, то движе­ние точки называют прямолинейным, а если - кривая, то - криволиней­ным. Если траектория - плоская, то движение точки называют плоским.

Движение точки или тела, считается заданным или известным, если для каждого момента времени (t) можно указать положение точ­ки или тела относительно выбранной системы координат.

Положение точки в пространстве определяется заданием:

а) траектории точки;

б) начала О 1 отсчета расстояния по траектории (Рису­нок 11): s = О 1 М - криволиней­ная координата точки М;

в) направления положи­ тельного отсчета расстояний s;

г) уравнения или закона движения точки по траектории: S = s(t)

Скорость точки. Если точ­ка за равные промежутки време­ни проходит равные отрезки пути, то ее движение называют равномерным. Скорость равно­мерного движения измеряется отношением пути з, пройденно­го точкой за некоторый проме­жуток времени, к величине это­го промежутка времени: v = s/1. Если точка за равные промежут­ки времени проходит неравные пути, то ее движение называют неравномерным. Скорость в этом случае также переменна и являет­ся функцией времени: v = v(t). Рассмотрим точку А, которая перемещается по заданной тра­ектории по некоторому закону s = s(t) (Рисунок 12):

За промежуток времени t т. А переместилась в положение А 1 по дуге АА. Если промежуток времени Δt мал, то дугу АА 1 можно заменить хордой и найти в первом приближении величину средней скорости движения точки v cp = Ds/Dt. Средняя скорость направлена по хорде от т. А к т. А 1 .

Истинная скорость точки направлена по касательной к траекто­рии, а ее алгебраическая величина определяется первой производной пути по времени:

v = limΔs/Δt = ds/dt

Размерность скорости точки: (v) = длима/время, например, м/с. Если точка движется в сторону увеличения криволинейной координаты s, то ds > 0, и следовательно, v > 0, а в противном случае ds < 0 и v < 0.

Ускорение точки. Изменение скорости в единицу времени опреде­ляется ускорением. Рассмотрим движение точки А по криволинейной траектории за время Δt из положения A в положение A 1 . В положении A точка имела скорость v , а в положении A 1 - скорость v 1 (Рисунок 13). т.е. скорость точки изменилась по величине и направлению. Геометрическую разность, скоростей Δv найдем, построив из точки A вектор v 1.


Ускорением точки называют вектора ", равный первой производной от вектора скорости точки по времени:

Найденный вектор ускорения а может быть разложен на две взаимно-перпендикулярные составляющие но касательной и нормали к траек­тории движения . Касательное ускорение а 1 совпадает по на­правлению со скоростью при ускоренном движении или противополож­но ей при замененном движении. Оно характеризует изменение величи-ны скорости и равно производной от величины скорости по времени

Вектор нормального ускорения а направлен по нормали (пер­пендикуляру) к кривой в сторону вогнутости траектории, а модуль его равен отношению квадрата величины скорости точки к радиусу кри­визны траектории в рассматриваемой точке.

Нормальное ускорение характеризует изменение скорости по
направлению.

Величина полного ускорения: , м/с 2

Виды движения точки в зависимости от ускорения.

Равномерное прямолинейное движение (движение по инерции) характеризуется тем, что скорость движения постоянна, а радиус кри­визны траектории равен бесконечности.

То есть, r = ¥, v = const, тогда ; и поэтому . Итак, при движении точки по инерции ее ускорение равно нулю.

Прямолинейное неравномерное движение. Радиус кривизны траектории r = ¥, а n = 0, поэтому и а = а t и а = а t = dv/dt.

Загрузка...
Top