Геометрическое тело состоящее из 6 граней. Геометрические тела, их поверхности и объёмы. Боковые ребра призмы равны и параллельны

ТЕОРИЯ МНОГОГРАННИКОВ

Гранные геометрические тела

Гранным геометрическим телом или многогранником называют часть пространства, ограниченную совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной другого одного многоугольника (называемого смежным), причем вокруг каждой вершины существует один цикл многоугольников. Упрощая вышеизложенное определение, получаем определение многогранника, знакомое из школьного учебника.

Многогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами многогранника, а концы ребер - вершинами многогранника.

Из истории

Греческая математика, в которой впервые появилась теория многогранников, развивалась под большим влиянием знаменитого мыслителя Платона.

Платон (427–347 до н.э.) – великий древнегреческий философ, основатель Академии и родоначальник традиции платонизма. Одним из существенных черт его учения является рассмотрение идеальных объектов - абстракций. Математика, взяв на вооружение идеи Платона, со времен Евклида изучает именно абстрактные, идеальные объекты. Однако и сам Платон, и многие древние математики вкладывали в термин идеальный не только смысл абстрактный, но и смысл наилучший. В соответствии с традицией, идущей от древних математиков, среди всех многогранников лучшие те, которые имеют своими гранями правильные многоугольники.

Многогранники можно классифицировать по нескольким признакам: например, по числу граней различают четырехгранники, пятигранники и т. д.

Различают правильные и полуправильные многогранники. Правильными называют такие многогранники, у которых все грани - правильные равные многоугольники и все углы при вершинах равны. Если гранями многогранника являются различные правильные многоугольники, то получается многогранник, который называется полуправильным (равноугольно полуправильным). Полуправильным многогранником называется выпуклый многогранник, гранями которого являются правильные многоугольники (возможно, и с разным числом сторон), и все многогранные углы равны.

Кроме правильных и полуправильных многогранников красивые формы имеют так называемые правильные звездчатые многогранники. Они получаются из правильных многогранников продолжением граней или ребер аналогично тому, как правильные звездчатые многоугольники получаются продолжением сторон правильных многоугольников.

Из множества многогранников выделим наиболее известные: призму и пирамиду (рис. 1).

Призмой называют многогранник, у которого две одинаковые взаимно параллельные грани - основания, а остальные - боковые грани – параллелограммы.

Пирамида представляет собой многогранник, у которого одна грань - произвольный многоугольник - принимается за основание, а остальные грани (боковые) - треугольники с общей вершиной, называемой вершиной пирамиды.

На рис. 2 представлены несколько призм и пирамид. Пирамида, основание которой имеет форму треугольника, называется треугольной пирамидой. Так, можно говорить о квадратных, пятиугольных и т.д. пирамидах рис. 2, а и 2, б . Основанием треугольной пирамиды может служить любая грань.

На рис. 2, в, 2, г и 2, д приведены примеры некоторого класса многогранников, вершины которых можно разделить на два множества из одинакового числа точек; точки каждого из этих множеств являются вершинами р-угольника, причем плоскости обоих p-угольников параллельны. Если эти два р-угольника (основания) конгруэнтны и расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника параллельными прямолинейными отрезками, то такой многогранник называется р-угольной призмой. Примерами двух р-угольных призм могут служить треугольная призма (р = 3) на рис. 2, в и пятиугольная призма (р = 5) на рис. 2, г . Если же основания расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника зигзагообразной ломаной, состоящей из 2р прямолинейных отрезков, как на рис. 2, д , то такой многогранник называется р-угольной антипризмой.

Кроме двух оснований, у р-угольной призмы имеются р граней - параллелограммов. Если параллелограммы имеют форму прямоугольников, то призма называется прямой. У такой призмы ребра боковых граней перпендикулярны основанию. Призму, у которой основания не параллельны, называют усеченной.

2. Правильные многогранники. Выпуклый многогранник называется правильным, если он удовлетворяет следующим двум условиям:

Все его грани - конгруэнтные правильные многоугольники;

К каждой вершине примыкает одно и то же число граней.

Если все грани правильного многогранника правильные многоугольники, то в правильных многогранниках все плоские, многогранные и двугранные углы равны.

Если все грани - правильные р-угольники и q из них примыкают к каждой вершине, то такой правильный многогранник обозначается {p, q}. Первое число в скобках указывает, сколько сторон у каждой грани, второе - число граней, примыкающих к каждой вершине. Это обозначение было предложено Л. Шлефли (1814-1895), швейцарским математиком, которому принадлежит немало изящных результатов в геометрии и математическом анализе. Существуют невыпуклые многогранники, у которых грани пересекаются и которые называются "правильными звездчатыми многогранниками". В геометрии условно под правильными многогранниками понимают исключительно выпуклые правильные многогранники

Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном.

Существует 5 видов правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.

ТЕТРАЭДР – правильный многогранник, поверхность которого состоит из четырех правильных треугольников.

ГЕКСАЭДР (КУБ) – правильный многогранник, поверхность которого состоит из шести правильных четырехугольников (квадратов

ОКТАЭДР – правильный многогранник, поверхность которого состоит из восьми правильных треугольников.

ДОДЕКАЭДР – правильный многогранник, поверхность которого состоит из двенадцати правильных пятиугольников.

ИКОСАЭДР – правильный многогранник, поверхность которого состоит из двадцати правильных треугольников.

Названия этих многогранников пришли из Древней Греции, и в них указывается число граней:

«эдра» - грань;

«тетра» - 4;

«гекса» - 6;

«окта» - 8;

«икоса» - 20;

«додека» - 12.

На рис. 3 изображены правильные многогранники

Из истории

Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим. Это была одна из первых попыток ввести в науку идею систематизации.

Древние греки рассматривали додекаэдр как форму Вселенной. Ими исследовались также и многие геометрические свойства платоновых тел; с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида.

Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Свойства правильных многогранников . Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой "описанной сферой", имеются еще две важные сферы. Одна из них, "срединная сфера", проходит через середины всех ребер, а другая, "вписанная сфера", касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.

Число правильных многогранников . Естественно спросить, существуют ли кроме платоновых тел другие правильные многогранники.

Платоновы тела - трехмерный аналог плоских правильных многоугольников. Однако между двумерным и трехмерным случаями есть важное отличие: существует бесконечно много различных правильных многоугольников, но лишь пять различных правильных многогранников. Доказательство этого факта известно уже более двух тысяч лет; этим доказательством и изучением пяти правильных тел завершаются Начала Евклида

Как показывают следующие простые соображения, ответ должен быть отрицательным. Пусть {p, q} - произвольный правильный многогранник. Так как его гранями служат правильные р-угольники, их внутренние углы, как нетрудно показать, равны (180 - 360/р) или 180 (1 - 2/р) градусам. Так как многогранник {p, q} выпуклый, сумма всех внутренних углов по граням, примыкающим к любой из его вершин, должна быть меньше 360 градусов. Но к каждой вершине примыкают q граней, поэтому должно выполняться неравенство.

где символ < означает "меньше чем". После несложных алгебраических преобразований полученное неравенство приводится к виду

Нетрудно видеть, что p и q должны быть больше 2. Подставляя в (1) р = 3, мы обнаруживаем, что единственными допустимыми значениями q в этом случае являются 3, 4 и 5, т.е. получаем многогранники {3, 3}, {3, 4} и {3, 5}. При р = 4 единственным допустимым значением q является 3, т.е. многогранник {4, 3}, при р = 5 неравенству (1) также удовлетворяет только q = 3, т.е. многогранник {5, 3}. При p > 5 допустимых значений q не существует. Следовательно, других правильных многогранников, кроме тел Платона, не существует.

3. Полуправильные многогранники. Выше мы рассмотрели правильные многогранники, т.е. такие выпуклые многогранники, гранями которых являются равные правильные многоугольники, и в каждой вершине которых сходится одинаковое число граней. Если в этом определении допустить, чтобы гранями многогранника могли быть различные правильные многоугольники, то получим многогранники, которые называются полуправильными (равноугольно полуправильными).

Полуправильным многогранником называется выпуклый многогранник, гранями которого являются правильные многоугольники (возможно, и с разным числом сторон), и все многогранные углы равны.

К полуправильным многогранникам относятся правильные n-угольные призмы, все ребра которых равны. Например, правильная пятиугольная призма на рисунке 4, а имеет своими гранями два правильных пятиугольника - основания призмы и пять квадратов, образующих боковую поверхность призмы. К полуправильным многогранникам относятся и так называемые антипризмы. На рисунке 4, б мы видим пятиугольную антипризму, полученную из пятиугольной призмы поворотом одного из оснований относительно другого на угол 36. Каждая вершина верхнего и нижнего оснований соединена с двумя ближайшими вершинами другого основания.

а б в

Кроме этих двух бесконечных серий полуправильных многогранников имеется еще 13 полуправильных многогранников которые впервые открыл и описал Архимед - это тела Архимеда.

Самые простые из них получаются из правильных многогранников операцией "усечения", состоящей в отсечении плоскостями углов многогранника. Если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его ребер, выходящих из одной вершины, то получим усеченный тетраэдр, имеющий восемь граней (рис. 4, в ). Из них четыре - правильные шестиугольники и четыре - правильные треугольники. В каждой вершине этого многогранника сходятся три грани.

Если указанным образом срезать вершины октаэдра и икосаэдра, то получим соответственно усеченный октаэдр (рис. 5, а) и усеченный икосаэдр (рис. 5, б). Обратите внимание на то, что поверхность футбольного мяча изготавливают в форме поверхности усеченного икосаэдра. Из куба и додекаэдра также можно получить усеченный куб (рис. 5,в) и усеченный додекаэдр (рис. 5, г).

а б в г

Мы рассмотрели 4 из 13 описанных Архимедом полуправильных многогранников. Оставшиеся - многогранники более сложного типа.

Из истории

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетам выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой небесных сфер, по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр.

Серьезный шаг в науке о многогранниках был сделан в XVIII веке Леонардом Эйлером (1707-1783), который без преувеличения «поверил алгеброй гармонию». Теорема Эйлера о соотношении между числом вершин, ребер и граней выпуклого многогранника, доказательство которой Эйлер опубликовал в 1758 г. в «Записках Петербургской академии наук», окончательно навела математический порядок в многообразном мире многогранников.

Вершины + Грани - Рёбра = 2.

Элементы симметрии правильных многогранников

Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, простейших микроорганизмов

Звездчатые многогранники

Звездчатые многогранники получаются из правильных многогранников продолжением граней или ребер аналогично тому, как правильные звездчатые многоугольники получаются продолжением сторон правильных многоугольников.

Первые два правильных звездчатых многогранника были открыты И. Кеплером (1571-1630), а два других почти 200 лет спустя построил французский математик и механик Л. Пуансо (1777-1859). Именно поэтому правильные звездчатые многогранники называются телами Кеплера-Пуансо.

В работе "О многоугольниках и многогранниках" (1810) Пуансо описал четыре правильных звездчатых многогранника, но вопрос о существовании других таких многогранников оставался открытым. Ответ на него был дан год спустя, в 1811 году, французским математиком О. Коши (1789-1857). В работе "Исследование о многогранниках" он доказал, что других правильных звездчатых многогранников не существует.

Рассмотрим вопрос о том, из каких правильных многогранников можно получить правильные звездчатые многогранники. Из тетраэдра, куба и октаэдра правильные звездчатые многогранники не получаются. Возьмем додекаэдр. Продолжение его ребер приводит к замене каждой грани звездчатым правильным пятиугольником (рис. 30,а), и в результате возникает многогранник, который называется малым звездчатым додекаэдром (рис. 30,б).

При продолжении граней додекаэдра возникают две возможности. Во-первых, если рассматривать правильные пятиугольники, то получится так называемый большой додекаэдр (рис. 31). Если же, во-вторых, в качестве граней рассматривать звездчатые пятиугольники, то получается большой звездчатый додекаэдр (рис. 32).

Икосаэдр имеет одну звездчатую форму. При продолжении граней правильного икосаэдра получается большой икосаэдр (рис. 33).

Таким образом, существуют 4 типа правильных звездчатых многогранников.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений.

Многие формы звездчатых многогранников подсказывает сама природа. Снежинки - это звездчатые многогранники (рис 34). С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.


Похожая информация.


Любое геометрическое тело состоит из оболочки, т. е. внешней поверхности, и какого-либо материала, его наполняющего (рис. 42). Каждое геометрическое тело имеет свою форму, кото­рая различается по составу, структуре и размерам.

Состав формы геометрического тела - перечень отсеков по­верхностей, составляющих его (табл. 4). Так, форма прямоуголь­ного параллелепипеда состоит из шести отсеков, поверхностей (граней): две из них являются основаниями параллелепипеда, а остальные четыре отсека образуют замкнутую выпуклую лома­ную поверхность, называемую боковой поверхностью.

Рис 42. Геометрическое тело: 1 - оболочка; 2 - отсеки поверхностей, образующих оболочку тела

Структура формы геометрического тела - характеристика формы, которая показывает взаимосвязь и расположение отсеков поверхностей относительно друг друга (см. рис. 44).

Эти характеристики взаимосвязаны и в наибольшей степени определяют форму геометрического тела и любого другого объ­екта.

По форме простые геометрические тела делятся на много­гранники и тела вращения.

Плоскость является частным случаем поверхности.

Многогранники - геометрические тела, оболочка которых об­разована отсеками плоскостей (рис. 43, а).

Грани - отсеки плоскостей, которые составляют поверхность (оболочку) многогранника; ребра - отрезки прямых, по которым пересекаются грани; вершины - концы ребер.

Тела вращения - геометрические тела (рис. 43, б), оболочка которых представляет собой поверхность вращения (например, шар) либо состоит из отсека поверхности вращения и одного (двух) отсека плоскостей (например, конус, цилиндр и т. п.).

Рис. 43. Многогранники (а) и тела вращения (б): 1 - оболочка геометрического тела;
2 - отсеки плоскостей; 3 - отсеки поверхностей вращения

4. Состав простых геометрических тел




Структура формы влияет на внешний облик геометрического тела. Рассмотрим это на примере прямого и наклонного цилинд­ров (рис. 44), отсеки оснований которых по-разному расположены относительно друг друга.

Рис. 44. Структурные различия в форме цилиндров

Рис. 45. Изменения формы цилиндров



Рис. 46. Четырехугольные пирамиды различной формы

Сравнивая изображения цилиндров на рисунке 45, можно сделать вывод, что изменение положения одного из оснований приводит к изменению формы геометрического тела.

Изменение высоты, ширины, длины, диаметра основания, угла наклона осевой, положение оснований относительно друг друга су­щественно влияет на форму геометрических тел. Например, рас­смотрите четырехугольные пирамиды различной формы (рис. 46).

Рис. 47. Геометрические тела

3 4 6 12 8 O h 3 5 12 30 20 I h Гексаэдр или куб 4 3 8 12 6 O h 5 3 20 30 12 I h

Название каждого многогранника происходит от греческого названия количества его граней и слова "грань".

Комбинаторные свойства

  • Эйлером была выведена формула, связывающая число вершин (В), граней (Г) и рёбер (Р) любого выпуклого многогранника простым соотношением : В + Г = Р + 2.
  • Отношение количества вершин правильного многогранника к количеству рёбер одной его грани равно отношению количества граней этого же многогранника к количеству рёбер, выходящих из одной его вершины. У тетраэдра это отношение равно 4:3, у гексаэдра и октаэдра - 2:1, а у додекаэдра и икосаэдра - 4:1.
  • Правильный многогранник может быть комбинаторно описан символом Шлефли {p , q }, где: p - число сторон каждой грани; q - число рёбер, сходящихся в каждой вершине.
Символы Шлефли для правильных многогранников приведены в следующей таблице:
Многогранник Вершины Рёбра Грани Символ Шлефли
тетраэдр 4 6 4 {3, 3}
куб 8 12 6 {4, 3}
октаэдр 6 12 8 {3, 4}
додекаэдр 20 30 12 {5, 3}
икосаэдр 12 30 20 {3, 5}
Из этих соотношений и формулы Эйлера можно получить следующие выражения для В, Р и Г:

Геометрические свойства Углы

С каждым правильным многогранником связаны определённые углы , характеризующие его свойства. Двугранный угол между смежными гранями правильного многогранника {p, q} задаётся формулой:

Иногда удобнее пользоваться выражением через тангенс :

где принимает значения 4, 6, 6, 10 и 10 для тетраэдра, куба, октаэдра, додекаэдра и икосаэдра соответственно.

Угловой дефект при вершине многогранника – это разность между 2π и суммой углов между рёбрами каждой грани при этой вершине. Дефект при любой вершине правильного многогранника:

Многогранник Двугранный угол
θ
Плоский угол между рёбрами при вершине Угловой дефект (δ) Телесный угол при вершине (Ω) Телесный угол, стягиваемый гранью
тетраэдр 70.53° 60° π π
куб 90° 1 90°
октаэдр 109.47° √2 60°, 90°
додекаэдр 116.57° 108°
икосаэдр 138.19° 60°, 108°

Радиусы, площади и объёмы

С каждым правильным многогранником связаны три концентрические сферы:

  • Описанная сфера, проходящая через вершины многогранника;
  • Срединная сфера, касающаяся каждого его ребра в середине;
  • Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной () и вписанной () сфер задаются формулами:

где θ - двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

где h - величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

Площадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

Объём правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды , основанием которой служит правильный p-угольник, а высотой - радиус вписанной сферы r:

Приведённая таблица содержит список различных радиусов, площадей поверхностей и объёмов правильных многогранников. Значение длины ребра a в таблице приравнены к 2.

Многогранник
(a = 2)
Радиус вписанной сферы (r ) Радиус срединной сферы (ρ) Радиус описанной сферы (R )

Константы φ и ξ задаются выражениями

Среди правильных многогранников как додекаэдр, так и икосаэдр представляют собой лучшее приближение к сфере. Икосаэдр имеет наибольшее число граней, наибольший двугранный угол и плотнее всего прижимается к своей вписанной сфере. С другой стороны, додекаэдр имеет наименьший угловой дефект, наибольший телесный угол при вершине и максимально заполняет свою описанную сферу.

Первые геометрические понятия возникли в доисторические времена. Разные формы материальных тел наблюдал человек в природе: формы растений и животных, гор и извилин рек, круга и серпа Луны и т. п. Однако человек не только пассивно наблюдал природу, но практически осваивал и использовал ее богатства. Практическая деятельность человека служила основой открытия простейших геометрических зависимостей и соотношений.

Многогранники

В памятниках вавилонской и древнеегипетской архитектуры встречаются такие геометрические фигуры, как куб, параллелепипед, призма. Важнейшей задачей египетской и вавилонской геометрии было определение объема различных пространственных фигур. Эта задача отвечала необходимости строить дома, дворцы, храмы и другие сооружения.

Часть геометрии, в которой изучаются свойства куба, призмы, параллелепипеда и других геометрических тел и пространственных фигур, издавна называется стереометрией; Слово это греческого происхождения и встречается еще у знаменитого древнегреческого философа Аристотеля. Стереометрия возникла позже, чем планиметрия. Евклид дает следующее определение призмы: "Призма есть телесная фигура, заключенная между плоскостями, из которых две противоположные равны и параллельны, остальные же -параллелограммы". Тут, как и во многих других местах, Евклид употребляет термин "плоскость" не в смысле безгранично продолженной плоскости, а в смысле ограниченной ее части, грани, подобно тому как "прямая" означает у него и отрезок прямой.

Термин "призма" греческого происхождения и буквально означает "отпиленное" . Термин "параллелепипедальное тело" встречается впервые у Евклида и означает дословно "параллеле-плоскостное тело". Греческое слово "кубос" употребляется Евклидом в том же смысле, что и наше слово "куб".

Поверхность составленную из многоугольников и ограничивающую некоторое геометрическое тело, будет называть многогранной поверхностью или многогранником. Виды многогранников: параллелепипед, призма, пирамида.

Призма

Многогранник, составленный из двух равных многоугольников, расположенных в параллельных плоскостях, и параллелограммов, называется призмой. Многоугольники называются основаниями, а параллелограммы – боковыми гранями призмы. Отрезки называются боковыми ребрами призмы.

Если боковые ребра перпендикулярны к основаниям, то призма называется прямой.

Если в основании прямой призмы лежат правильные многоугольники, то призма называется правильной.

Параллелепипед

Если в основании призмы лежит параллелограмм, то призма называется параллелепипедом. Параллелепипеды бывают наклонные, прямые и прямоугольные.

Прямоугольный параллелепипед имеет три измерения: длину, высоту и ширину. У параллелепипеда 8 вершин, 12 ребер, 6 граней. Каждая грань параллелепипеда – прямоугольник. Противоположенные грани параллелепипеда равны. Среди всех параллелепипедов особую роль играет куб. Куб – это прямоугольный параллелепипед, у которого все стороны равны. Все его грани – квадраты.

Пирамида

Важным и интересным семейством многогранников является пирамида. У пирамиды различают основание и боковые грани. Боковые грани – треугольники, сходящиеся в одной вершине, а основание – многоугольник, противолежащий этой вершине. В основании может лежать многоугольник с любым количеством сторон. Пирамиду называют по числу сторон ее основания: треугольная пирамида, четырехугольная пирамида, шестиугольная пирамида… Простейшей пирамидой и даже простейшем многогранником является треугольная пирамида. Все ее грани – треугольники, и каждая из них может считаться основанием.

Пирамида называется правильной, если ее основание – правильный многоугольник, и вершина пирамиды проектируется в центр этого многоугольника. Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными треугольниками.

Многогранник, гранями которого является многоугольники, расположенные в параллельных плоскостях, и четырехугольников - боковые грани называют усеченной пирамидой.

Правильные многогранники

Правильным называют многогранник, все грани которого – равные правильные многоугольники и в каждой вершине сходится одинаковое число граней.

Виды правильных многоугольников

Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников.

Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая его вершина является вершиной четырех треугольников.

Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников.

Куб составлен из шести квадратов. Каждая его вершина является вершиной трех квадратов.

Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая его вершина является вершиной трех правильных пятиугольников.

Круглые тела

Круглые тела имеют круглую форму. Также могут состоять из нескольких окружностей, круглые тела образуются с помощью вращения квадратной плоскости. В таких фигурах также есть свои особенности, например, существует сложные круглые тела. Примеры круглых тел: цилиндр, конус, сфера и шар.

Цилиндр

Тело, ограниченное цилиндрической поверхностью и двумя кругами с границами, называют цилиндром. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги основаниями цилиндра. Образующие цилиндрической поверхностью называются образующими цилиндра, прямая 001 - осью цилиндра. Все образующие цилиндра параллельны и равны друг другу как отрезки параллельных прямых, заключенные между параллельными плоскостями.

Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра.

Образующие цилиндрической поверхности называются образующими цилиндра.

Прямая, проходящая через центры оснований, называется осью цилиндра.

Длина образующей называется высотой, а радиус основания – радиусом цилиндра.

Конус

Тело, ограниченное конической поверхностью и кругом с границей, называется конусом. Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса. Конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов.

Усеченный конус

Если взять секущую плоскость, и провести ей по конусу, перпендикулярно к его оси. Эта плоскость пересекается с конусом по кругу и разбивает конус на две части. Одна из частей представляет из себя конус, а другая называется усеченным конусом. Основание исходного конуса и круг, полученный в сечении этого конуса плоскостью, называются основаниями усеченного конуса, а отрезок соединяющие их центры, - высотой усеченного конуса.

Часть конической поверхности, ограничивающая конус, называется ее боковой поверхностью, а отрезки образующих конической поверхности, заключенные между основаниями, называется образующими усеченного конуса. Все образующие усеченного конуса равны друг другу.

Шар и сфера

Сферой называют поверхность, состоящая из все точек пространства, расположенных на данном расстоянии от данной точки. Данная точка называется центром сферы, а донное расстояние радиусом сферы.

Тело, ограниченное сферой называется шаром. Центр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара.

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.

Загрузка...
Top